Table 22–1 表22-1 10的连续平方根

Now let us see how to calculate logarithms.We begin by computing successive square roots of 10 , by cut and try. The results are shown in Table 22–1. Thepowers of 10 are given in the first column, and the result, 10s , is given in the third column. Thus 101=10 . The one-half power of 10 we can easily work out, because that is the square root of 10 , and there is a known, simple process for taking square roots of anynumber.1Using this process, we find the first square root to be 3.16228 . What good is that? It already tells us something, it tells us how totake 100.5 , so we now know at least one logarithm, if we happen to needthe logarithm of 3.16228 , we know the answer is close to 0.50000 . But we must do a little bit better than that; we clearly need moreinformation. So we take the square root again, and find 101/4 , which is 1.77828 . Now we have the logarithm of more numbers than we had before, 1.250 is the logarithm of 17.78 and, incidentally, if it happens that somebody asks for 100.75, we can get it, because that is 10(0.5+0.25) ; it is therefore the product of the second and third numbers. If wecan get enough numbers in column s to be able to make up almost any number, then by multiplying theproper things in column 3, we can get 10 to any power; that is the plan. So we evaluate ten successive squareroots of 10 , and that is the main work which is involved in the calculations.
现在,让我们看,如何计算对数。我们用实验的方式,从计算10的连续的平方根开始。结果见表22-1。10的次方数,在第一列,结果10s在第三列。这样101=10。10的二分之一次方,我们很容易得出,因为,它就是10的平方根。有一个已知的、简单的过程,可以用来取任何数的平方根。(脚注1)利用这个过程,我们发现,第一个平方根是3.16228。这有什么好处呢?它已经告诉了我们一些事情,它告诉我们,如何得到100.5 ,所以,现在我们至少知道了一个对数,如果我们碰巧需要 3.16228的对数,那么,我们就知道,答案接近于0.50000。但是,我们应该做的比这更好一些;很明显,我们需要更多信息。于是,我们再取平方根,发现101/4,是 1.77828。现在,我们比以前,有了更多数的对数,顺便说一下,如果碰巧有人问,100.75是多少的话,我们的可以得到它,因为,它就是10(0.5+0.25);因此,它就是第二个和第三个数的积。如果在列s中,我们可以得到足够的数{?},那么,我们可以造出任何数,因此,通过从第三列中,取出合适的数,让其相乘,我们就可以得到10的任何次方;这就是计划。所以,我们就估算了10的十个连续的平方根,这就是本计算中的主要工作。