If we take the x -, y -, and z -axes along the principal axes, and call the corresponding principalmoments of inertia A , B , and C , we may easily evaluate the angular momentum and the kinetic energyof rotation of the body for any angular velocity ω . If we resolve ω into components ωx , ωy , and ωz along the x -, y -, z -axes, and use unit vectors i , j , k , also along x , y , z , we may write the angular momentum as
L=Aωxi+Bωyj+Cωzk. (20.16)
The kinetic energy of rotation is
(20.17)
如果我们,沿着主轴,取x、y、z轴,并称相应的主惯性力距为A , B , 和C,那么,对于一个物体,角速度为ω,我们很容易估计其角动量、和旋转的动能。如果我们把ω,分解成沿着x、y、z轴的分量ωx , ωy , 和 ωz,且使用也是沿着x、y、z轴的单位矢量i , j , k,那么,我们可以把角动量写为:
L=Aωxi+Bωyj+Cωzk. (20.16)
把旋转的动能写为:

(20.17)
1、That this is true can be derived by compounding the displacements ofthe particles of the body during an infinitesimal time Δt . It is not self-evident, and is left to those who are interested totry to figure it out.
脚注1、在极短的时间内,物体的粒子,各有移动过的距离,通过混合这些距离,可以推出,它是真的。它不是不证自明的,留给感兴趣的人去思考。