21–2The harmonic oscillator 21-2 谐波震荡

Fig. 21–1.A mass on a spring: a simpleexample of a harmonic oscillator. 图21-1 弹簧上的一个质量:一个简单的谐波震荡例子。
Perhaps the simplest mechanical systemwhose motion follows a linear differential equation with constant coefficientsis a mass on a spring: first the spring stretches to balance the gravity; onceit is balanced, we then discuss the vertical displacement of the mass from itsequilibrium position (Fig. 21–1). Weshall call this upward displacement x , and we shall also suppose that the spring is perfectly linear, inwhich case the force pulling back when the spring is stretched is precisely proportionalto the amount of stretch. That is, the force is −kx (with a minus sign to remind us that it pulls back). Thus the masstimes the acceleration must equal −kx :
md2x/dt2=−kx. (21.2)
For simplicity, suppose it happens (or we change our unit of time measurement)that the ratio k/m=1 . We shall first study the equation
d2x/dt2=−x. (21.3)
Later we shall come back to Eq. (21.2)with the k and m explicitly present.
有些力学系统,其运动,具有常数系数的线性微分方程,或许其中最简单的,就是弹簧上的质量:首先,弹簧伸展,以平衡重力,一旦平衡后,我们将讨论质量距其平衡位置的垂直位移(图21-1)。我们将把它,称为向上的位移x,我们也将假设,弹簧是完全线性的,在这种情况下,当弹簧伸展时,其往回拉的力,就是准确地正比于伸展的量。也就是说,力就是-kx(负号用来提醒我们,力是往回拉的)。这样,质量乘以加速度,就应等于-kx:
md2x/dt2=−kx. (21.2)
为简单起见,假设(或者,我们改变了我们的时间测量的单位),比率k/m=1。我们将首先研究方程:
d2x/dt2=−x. (21.3)
稍后,我们将返回方程(21.2),届时,k和m的意义,将完全清楚。

Fig. 21–1.A mass on a spring: a simpleexample of a harmonic oscillator. 图21-1 弹簧上的一个质量:一个简单的谐波震荡例子。
Perhaps the simplest mechanical systemwhose motion follows a linear differential equation with constant coefficientsis a mass on a spring: first the spring stretches to balance the gravity; onceit is balanced, we then discuss the vertical displacement of the mass from itsequilibrium position (Fig. 21–1). Weshall call this upward displacement x , and we shall also suppose that the spring is perfectly linear, inwhich case the force pulling back when the spring is stretched is precisely proportionalto the amount of stretch. That is, the force is −kx (with a minus sign to remind us that it pulls back). Thus the masstimes the acceleration must equal −kx :
md2x/dt2=−kx. (21.2)
For simplicity, suppose it happens (or we change our unit of time measurement)that the ratio k/m=1 . We shall first study the equation
d2x/dt2=−x. (21.3)
Later we shall come back to Eq. (21.2)with the k and m explicitly present.
有些力学系统,其运动,具有常数系数的线性微分方程,或许其中最简单的,就是弹簧上的质量:首先,弹簧伸展,以平衡重力,一旦平衡后,我们将讨论质量距其平衡位置的垂直位移(图21-1)。我们将把它,称为向上的位移x,我们也将假设,弹簧是完全线性的,在这种情况下,当弹簧伸展时,其往回拉的力,就是准确地正比于伸展的量。也就是说,力就是-kx(负号用来提醒我们,力是往回拉的)。这样,质量乘以加速度,就应等于-kx:
md2x/dt2=−kx. (21.2)
为简单起见,假设(或者,我们改变了我们的时间测量的单位),比率k/m=1。我们将首先研究方程:
d2x/dt2=−x. (21.3)
稍后,我们将返回方程(21.2),届时,k和m的意义,将完全清楚。












