One further property of the moment ofinertia is worth mentioning because it is often helpful in finding the momentof inertia of certain kinds of objects. This property is that if one has a planefigure and a set of coordinate axes with origin in the plane and z -axis perpendicular to the plane, then the moment of inertia of thisfigure about the z -axis is equal to the sum of the moments of inertia about the x- and y -axes. This is easily proved by noting that
惯性力矩,另有特性,值得讨论,因为,在寻找某类对象的惯性力矩时,它总是很有帮助。这个特性就是,如果有人,有一个平面图形,和一组坐标轴,原点在平面上,z轴垂直于平面,那么,这个图形的关于z轴的惯性力距,就等于其关于x轴和y轴的惯性力矩之和。这一点,只需注意如下,就很容易证明:

(由于 zi=0 )。类似地:
,
但是:

惯性力矩,另有特性,值得讨论,因为,在寻找某类对象的惯性力矩时,它总是很有帮助。这个特性就是,如果有人,有一个平面图形,和一组坐标轴,原点在平面上,z轴垂直于平面,那么,这个图形的关于z轴的惯性力距,就等于其关于x轴和y轴的惯性力矩之和。这一点,只需注意如下,就很容易证明:
(由于 zi=0 )。类似地:
但是:






(20.1)








