We will be living in three dimensions for along time, so it is well to notice that the foregoing mathematical treatmentdid not depend upon the fact that x was position and F was force; it only depended on the transformation laws for vectors.Therefore if, instead of x , we used the x -component of some other vector, it is not going to make anydifference. In other words, if we were to calculate axby−aybx, where a and b are vectors, and call it the z -component of some new quantity c , then these new quantities form a vector c . We need a mathematical notation for the relationship of the newvector, with its three components, to the vectors a and b . The notation that has been devised for this is c=a×b. We have then, in addition to the ordinary scalar product in thetheory of vector analysis, a new kind of product, called the vector product.Thus, if c=a×b , this is the same as writing
(20.9)
If we reverse the order of a and b , calling a , b and b , a , we would have the sign of c reversed, because cz would be bxay−byax. Therefore the cross product is unlike ordinary multiplication, whereab=ba ; for the cross product, b×a=−a×b. From this, we can prove at once that if a=b, the cross product is zero. Thus, a×a=0 .
我们将在三维中,生活很长时间,所以,应该注意,前面的数学处理,并不依赖于事实:x是位置、F是力;它只依赖于矢量的变换规律。因此,如果我们不是使用x,而是使用的某个其他矢量的x分量,那么,将不会有任何区别。换句话说,如果我们要计算axby−aybx,这里a和b是矢量,那么,我们将把结果,称为某个新量c的z分量,这些新量,将构成矢量c。这个新矢量及其三个分量,与矢量a和b,有一种关系,我们需要一种数学表示法,来表示之。此表示法,已被发明,它就是c=a×b。因此,除了在矢量分析理论中,我们所谈到的标量积外,我们还有一种新的积,被称为矢量积。这样,如果c=a×b,那么,它与下式同:

(20.9)
如果我们改变 a和b的顺序, 把a变成 b,把b 变成 a , 那么,我们将会反转c的符号, 因为cz将会是bxay−byax。因此,叉积与普通乘法不一样,那里 ab=ba ; 而对于叉积, b×a=−a×b。由此,我们可以立即证明,如果 a=b ,那么,叉积为零。这样, a×a=0。