10–1Newton’s Third Law 10-1 牛顿第三规律
On the basis of Newton’s second law ofmotion, which gives the relation between the acceleration of any body and theforce acting on it, any problem in mechanics can be solved in principle. For example,to determine the motion of a few particles, one can use the numerical methoddeveloped in the preceding chapter. But there are good reasons to make afurther study of Newton’s laws. First, there are quite simple cases of motionwhich can be analyzed not only by numerical methods, but also by directmathematical analysis. For example, although we know that the acceleration of afalling body is 32 ft/sec², and from this fact could calculate the motion bynumerical methods, it is much easier and more satisfactory to analyze themotion and find the general solution, s=s0+v0t+16t2. In the same way, although we can work out the positions of aharmonic oscillator by numerical methods, it is also possible to showanalytically that the general solution is a simple cosine function of t, and so it is unnecessary to go to all that arithmetical trouble whenthere is a simple and more accurate way to get the result. In the same manner,although the motion of one body around the sun, determined by gravitation, canbe calculated point by point by the numerical methods of Chapter 9,which show the general shape of the orbit, it is nice also to get the exactshape, which analysis reveals as a perfect ellipse.
牛顿第二规律,给出了一个物体的加速度,与作用于其上的力的关系,基于该规律,任何力学的问题,原则上都可以解决。例如,要得到几个粒子的运动,可以使用上一章研发出来的数字方法。但是,对牛顿规律,做深入的研究,还是有很好的理由。首先,有些相当简单的运动情形,不仅可以通过数字方法来分析,而且,也可以通过直接的数学方法,来分析。例如,虽然我们知道,一个下落物体的加速度是32 ft/sec²,从此事实出发,通过数字方法,可计算出其运动,但是,通过分析这个运动,找到普遍的方程s=s0+v0t+16t2,会更简单,且更令人满意。以同样的方式,对于一个和谐振荡,虽然我们可以通过数字分析,得到其位置,但是,还是有可能分析性地指出,其普遍方程,是一个简单的t的cosine函数,于是,如果有一个简单的和更准确的方式,能得到结果的话,那么,就没有必要,去受这种算数运算的麻烦了。以同样的方式,一个绕着太阳的物体,其运动,由万有引力决定,虽然其运动,可以通过第9章的数字方式,逐点地计算的出来,以指出其轨道的一般形状,但是,能得到一个准确的形状,当然更好,通过分析,可揭示出,它是一个完美的椭圆。
On the basis of Newton’s second law ofmotion, which gives the relation between the acceleration of any body and theforce acting on it, any problem in mechanics can be solved in principle. For example,to determine the motion of a few particles, one can use the numerical methoddeveloped in the preceding chapter. But there are good reasons to make afurther study of Newton’s laws. First, there are quite simple cases of motionwhich can be analyzed not only by numerical methods, but also by directmathematical analysis. For example, although we know that the acceleration of afalling body is 32 ft/sec², and from this fact could calculate the motion bynumerical methods, it is much easier and more satisfactory to analyze themotion and find the general solution, s=s0+v0t+16t2. In the same way, although we can work out the positions of aharmonic oscillator by numerical methods, it is also possible to showanalytically that the general solution is a simple cosine function of t, and so it is unnecessary to go to all that arithmetical trouble whenthere is a simple and more accurate way to get the result. In the same manner,although the motion of one body around the sun, determined by gravitation, canbe calculated point by point by the numerical methods of Chapter 9,which show the general shape of the orbit, it is nice also to get the exactshape, which analysis reveals as a perfect ellipse.
牛顿第二规律,给出了一个物体的加速度,与作用于其上的力的关系,基于该规律,任何力学的问题,原则上都可以解决。例如,要得到几个粒子的运动,可以使用上一章研发出来的数字方法。但是,对牛顿规律,做深入的研究,还是有很好的理由。首先,有些相当简单的运动情形,不仅可以通过数字方法来分析,而且,也可以通过直接的数学方法,来分析。例如,虽然我们知道,一个下落物体的加速度是32 ft/sec²,从此事实出发,通过数字方法,可计算出其运动,但是,通过分析这个运动,找到普遍的方程s=s0+v0t+16t2,会更简单,且更令人满意。以同样的方式,对于一个和谐振荡,虽然我们可以通过数字分析,得到其位置,但是,还是有可能分析性地指出,其普遍方程,是一个简单的t的cosine函数,于是,如果有一个简单的和更准确的方式,能得到结果的话,那么,就没有必要,去受这种算数运算的麻烦了。以同样的方式,一个绕着太阳的物体,其运动,由万有引力决定,虽然其运动,可以通过第9章的数字方式,逐点地计算的出来,以指出其轨道的一般形状,但是,能得到一个准确的形状,当然更好,通过分析,可揭示出,它是一个完美的椭圆。










