Incidentally, to a good approximation wehave another law, which says that the change in distance of a moving point isthe velocity times the time interval, or Δs=vΔt . This statement is true only if the velocity is not changing duringthat time interval, and this condition is true only in the limit as Δtgoes to 0 . Physicists like to write it ds=vdt , because by dt they mean Δt in circumstances in which it is very small; with this understanding,the expression is valid to a close approximation. If Δt is too long, the velocity might change during the interval, and theapproximation would become less accurate. For a time dt , approaching zero, ds=vdt precisely. In this notation we can write (8.5)as
顺便说一句,我们有另外一条规律,可以有一个好的近似,该规律说,对于一个移动的点,其距离的变化,是速度乘以时间间隔,或 Δs=vΔt。这一说法,只有当速度在这段时间内不变时,才为真,而不变这个条件,只有当Δt取极限、趋于零时,才为真。物理学家喜欢把它写为ds=vdt,因为通过dt,他们意味着Δt处在一个它很小的情况中;用这种理解,这个表达式,对于近似来说,就是有效的。如果Δt太长,那么,在这段时间内,速度就可能变化,而近似就会变得不准确。当时间dt趋于零时,ds=vdt就是精确的。用这套符号,可以把(8.5)写为:

顺便说一句,我们有另外一条规律,可以有一个好的近似,该规律说,对于一个移动的点,其距离的变化,是速度乘以时间间隔,或 Δs=vΔt。这一说法,只有当速度在这段时间内不变时,才为真,而不变这个条件,只有当Δt取极限、趋于零时,才为真。物理学家喜欢把它写为ds=vdt,因为通过dt,他们意味着Δt处在一个它很小的情况中;用这种理解,这个表达式,对于近似来说,就是有效的。如果Δt太长,那么,在这段时间内,速度就可能变化,而近似就会变得不准确。当时间dt趋于零时,ds=vdt就是精确的。用这套符号,可以把(8.5)写为:



(8.6)









