Table 8–2
t (sec) s (ft)
0 000
1 016
2 064
3 144
4 256
5 400
6 576

Fig. 8–2.Graph of distance versus time for a falling body. 图8-2 一个下落物体的距离对时间曲线图
The motion of a car is complicated. For another example we take something that moves in a simpler manner, following more simple laws: a falling ball. Table 8–2 gives the time in seconds and the distance in feet for a falling body. At zero seconds the ball starts out at zero feet, and at the end of 1 second it has fallen 16 feet. At the end of 2 seconds, it has fallen 64 feet, at the end of 3 seconds, 144 feet, and so on; if the tabulated numbers are plotted, we get the nice parabolic curve shown in Fig. 8–2. The formula for this curve can be written as
s=16t2.(8.1)
This formula enables us to calculate the distances at any time. You might say there ought to be a formula for the first graph too. Actually, one may write such a formula abstractly, as
s=f(t),(8.2)
meaning that s is some quantity depending on t or, in mathematical phraseology, s is a function of t . Since we do not know what the function is, there is no way we can write it in definite algebraic form.
这个汽车的运动,比较复杂。另一个例子,是一个正在下落的球,其运动方式,更为简单,也遵循更简单的规律。表8-2,是一个正在下降的球,时间为秒,距离为英尺。在零秒,球从零英尺处,开始下降,1秒末,下降了16英尺,2秒末,64英尺,3秒末,144英尺等,如果表中的数字,被画出来,就是一个精致的抛物线,如图8-2。这条曲线的公式,可写为:
s=16t*t.(8.1)
这个公式,可以让我们计算任何时间的距离。你可以说,对于第一张曲线图,也应该有一个公式。实际上,我们可以把这种公式,抽象为:
s=f(t),(8.2)
其意义就是,s是一个量,依赖于t,或者,用数学的语言表达,s是时间的函数。由于我们不知道这个函数是什么,所以,我们没有办法用确定的代数形式,把它写出来。