Now in order to complete our analysis we must know what Moe would obtainfor the forces. The force is supposed to act along some line, and by the forcein the x -direction we mean the part of the total which is in the x -direction, which is the magnitude of the force times this cosine of itsangle with the x -axis. Now we see that Moe would use exactly the same projection as Joewould use, so we have a set of equations
Fx′=Fx, Fy′=Fy, Fz′=Fz. (11.3)
These would be the relationships between quantities as seen by Joe andMoe.
现在,为了完成我们的分析,我们应该知道,Moe能为力得到什么。力被假定是沿着某条线起作用,通过x方向的力,我们是指总的力在x方向的分量,它是力的大小,乘以,力与x轴的夹角的cosine。现在,我们看到,Moe使用的投影与Joe使用的投影一样,于是,我们就有一组方程:
Fx′=Fx, Fy′=Fy, Fz′=Fz. (11.3)
这就是Joe 和 Moe所看到的量之间的关系。

Fig. 11–1.Two parallel coordinate systems. 图11-1 两个平行的坐标系统。
Fx′=Fx, Fy′=Fy, Fz′=Fz. (11.3)
These would be the relationships between quantities as seen by Joe andMoe.
现在,为了完成我们的分析,我们应该知道,Moe能为力得到什么。力被假定是沿着某条线起作用,通过x方向的力,我们是指总的力在x方向的分量,它是力的大小,乘以,力与x轴的夹角的cosine。现在,我们看到,Moe使用的投影与Joe使用的投影一样,于是,我们就有一组方程:
Fx′=Fx, Fy′=Fy, Fz′=Fz. (11.3)
这就是Joe 和 Moe所看到的量之间的关系。

Fig. 11–1.Two parallel coordinate systems. 图11-1 两个平行的坐标系统。



(11.7)
(11.8)
(11.9)








