Now let us examine some of the propertiesof vectors. As examples of vectors we may mention velocity, momentum, force,and acceleration. For many purposes it is convenient to represent a vectorquantity by an arrow that indicates the direction in which it is acting. Whycan we represent force, say, by an arrow? Because it has the same mathematicaltransformation properties as a “step in space.” We thus represent it in adiagram as if it were a step, using a scale such that one unit of force, or onenewton, corresponds to a certain convenient length. Once we have done this, allforces can be represented as lengths, because an equation like
F=kr,
where k is some constant, is a perfectly legitimate equation. Thus we canalways represent forces by lines, which is very convenient, because once wehave drawn the line we no longer need the axes. Of course, we can quicklycalculate the three components as they change upon turning the axes, becausethat is just a geometric problem.
现在,让我们考察矢量的一些属性。作为矢量的例子,我们可以提到矢量速度、动量、力、和加速度。对于很多目的,通过一个箭头,来表示一个矢量,很方便,箭头指出了矢量作用的方向。为什么我们可以用一个箭头,来表示力?因为它有同样的数学转换属性,就像“空间的一步”一样。这样,我们就可以在一个图表中表示它,就好像它是一步一样,利用一个标量,这样,一个力或牛顿的单位,就相应于一定的方便的长度。一旦我们做了这个,所有的力,就都可以用长度来表示,因为,像:
F=kr,
这种方程,就是完全合法的方程,这里k是某个常数。这样,我们就总是可以用线段来表示力,这很方便,因为,一旦我们画了线,就不需要坐标轴了。当然,随着坐标轴的改变,三个分量也会变,我们可以快速地计算它们,因为,这只是一个几何问题。
F=kr,
where k is some constant, is a perfectly legitimate equation. Thus we canalways represent forces by lines, which is very convenient, because once wehave drawn the line we no longer need the axes. Of course, we can quicklycalculate the three components as they change upon turning the axes, becausethat is just a geometric problem.
现在,让我们考察矢量的一些属性。作为矢量的例子,我们可以提到矢量速度、动量、力、和加速度。对于很多目的,通过一个箭头,来表示一个矢量,很方便,箭头指出了矢量作用的方向。为什么我们可以用一个箭头,来表示力?因为它有同样的数学转换属性,就像“空间的一步”一样。这样,我们就可以在一个图表中表示它,就好像它是一步一样,利用一个标量,这样,一个力或牛顿的单位,就相应于一定的方便的长度。一旦我们做了这个,所有的力,就都可以用长度来表示,因为,像:
F=kr,
这种方程,就是完全合法的方程,这里k是某个常数。这样,我们就总是可以用线段来表示力,这很方便,因为,一旦我们画了线,就不需要坐标轴了。当然,随着坐标轴的改变,三个分量也会变,我们可以快速地计算它们,因为,这只是一个几何问题。















