Now we go to the next maximum, and we wantto see that it is really much smaller than the first one, as we had hoped. Weshall not go precisely to the maximum position, because both the numerator andthe denominator of (30.3)are variant, but sinϕ/2 varies quite slowly compared with sinnϕ/2when n is large, so when sin2nϕ/2=1 we are very closeto the maximum. The next maximum of sin2nϕ/2 comesat nϕ/2=3π/2 , or ϕ=3π/n . Thiscorresponds to the arrows having traversed the circle one and a half times. 现在,我们去到下一个最大值,我们想看看,它是真的比第一个小很多,就像我们所希望的那样。我们将精确地走到最大值的位置,因为,(30.3)中的分子和分母,都是变量,但是,当n很大时,与sinnϕ/2相比,sinϕ/2变的相当慢,所以,当sin2nϕ/2=1时,我们就可以非常接近最大值了。 sin2nϕ/2的下一个最大值,是在nϕ/2=3π/2,或 ϕ=3π/n。这相当于那些箭头,已经走过了1.5个循环的时间。On putting ϕ=3π/ninto the formula to find the size of the maximum, we find that sin23π/2=1in the numerator (because that is why we picked this angle), and in thedenominator we have sin23π/2n . Now if n issufficiently large, then this angle is very small and the sine is equal to theangle; so for all practical purposes, we can put sin3π/2n=3π/2n. Thus we find that the intensity at this maximum is I=I0(4n2/9π2). But n2I0 was the maximum intensity, andso we have 4/9π2 times the maximum intensity, which isabout 0.045 , less than 5 percent, of the maximum intensity! Ofcourse there are decreasing intensities farther out. So we have a very sharpcentral maximum with very weak subsidiary maxima on the sides.
在把ϕ=3π/n代入公式,以找到最大值的大小时,我们发现,在分子中,sin23π/2=1(因为这就是我们为什么选这个角度),在分母中,我们有sin23π/2n。现在,如果n充分大,那么,这个角度就很小,这样,其正弦就等于这个角度;于是,对于所有实践的目的来说,我们可以让sin3π/2n=3π/2n。这样,我们发现,在这个最大值处的强度就是I=I0(4n2/9π2)。但是,n2I0是最大的强度,所以,我们就有:4/9π2乘以最大强度,大约是0.045,比最大强度的5%略小!当然,在更远处,还有不断降低的强度。于是,在中心,我们就有一个非常尖锐的最大值,在边上,还有非常弱的、附属的最大值。
在把ϕ=3π/n代入公式,以找到最大值的大小时,我们发现,在分子中,sin23π/2=1(因为这就是我们为什么选这个角度),在分母中,我们有sin23π/2n。现在,如果n充分大,那么,这个角度就很小,这样,其正弦就等于这个角度;于是,对于所有实践的目的来说,我们可以让sin3π/2n=3π/2n。这样,我们发现,在这个最大值处的强度就是I=I0(4n2/9π2)。但是,n2I0是最大的强度,所以,我们就有:4/9π2乘以最大强度,大约是0.045,比最大强度的5%略小!当然,在更远处,还有不断降低的强度。于是,在中心,我们就有一个非常尖锐的最大值,在边上,还有非常弱的、附属的最大值。










