It is really very easy, and we presume thatwe already know how to do it. However, we shall outline the procedure in somedetail. First, we can, if we are clever with mathematics and know enough aboutcosines and sines, simply work it out. The easiest such case is the one where A1and A2 are equal, let us say they are both equal to A .In those circumstances, for example (we could call this the trigonometricmethod of solving the problem), we have
这确实很容易,我们假定,我们已经知道了如何做此事。然而,我们将用一些细节,概述一下此过程。首先,如果我们精通数学,且知道足够多的余弦和正弦函数,那么,我们就可以简单地得出。最容易的情况就是这种:A1 和 A2是相等的,比如都等于A。在这种情形下,例如(我们可以把此方法,称为解决问题的三角函数方法),我们就有:
R=A[cos(ωt+ϕ1)+cos(ωt+ϕ2)]. (29.9)
Once, in our trigonometry class, we mayhave learned the rule that
在我们的三角函数课中,一旦我们学会了规则:
(29.10)
If we know that, then we can immediatelywrite R as
如果我们知道了这个,那么,我们就可以立即把R写为:
(29.11)
So we find that we have an oscillatory wavewith a new phase and a new amplitude. In general, the result will be anoscillatory wave with a new amplitude AR , which we maycall the resultant amplitude, oscillating at the same frequency but with aphase difference ϕR , called the resultant phase. Inview of this, our particular case has the following result: that the resultantamplitude is
于是,我们发现,我们有了一个震荡波,它有新的相位,和新的振幅。一般来说,结果会是一个震荡波,有新的振幅 AR,这我们可称之为结果振幅,以同样的频率在震荡,但有一个相位差ϕR,被称为结果相位。鉴于这点,我们具体的情况,就有着如下的结果:结果振幅就是:
(29.12)
and the resultant phase is the average ofthe two phases, and we have completely solved our problem.
结果相位,就是两个相位的平均值,我们的问题,已经完全解决。
这确实很容易,我们假定,我们已经知道了如何做此事。然而,我们将用一些细节,概述一下此过程。首先,如果我们精通数学,且知道足够多的余弦和正弦函数,那么,我们就可以简单地得出。最容易的情况就是这种:A1 和 A2是相等的,比如都等于A。在这种情形下,例如(我们可以把此方法,称为解决问题的三角函数方法),我们就有:
R=A[cos(ωt+ϕ1)+cos(ωt+ϕ2)]. (29.9)
Once, in our trigonometry class, we mayhave learned the rule that
在我们的三角函数课中,一旦我们学会了规则:
If we know that, then we can immediatelywrite R as
如果我们知道了这个,那么,我们就可以立即把R写为:
So we find that we have an oscillatory wavewith a new phase and a new amplitude. In general, the result will be anoscillatory wave with a new amplitude AR , which we maycall the resultant amplitude, oscillating at the same frequency but with aphase difference ϕR , called the resultant phase. Inview of this, our particular case has the following result: that the resultantamplitude is
于是,我们发现,我们有了一个震荡波,它有新的相位,和新的振幅。一般来说,结果会是一个震荡波,有新的振幅 AR,这我们可称之为结果振幅,以同样的频率在震荡,但有一个相位差ϕR,被称为结果相位。鉴于这点,我们具体的情况,就有着如下的结果:结果振幅就是:
and the resultant phase is the average ofthe two phases, and we have completely solved our problem.
结果相位,就是两个相位的平均值,我们的问题,已经完全解决。




(30.2)









