Now in our particular wave there is adefinite relationship between the frequency and the wavelength, but the abovedefinitions of k and ω are actually quite general. That is,the wavelength and the frequency may not be related in the same way in otherphysical circumstances. However, in our circumstance the rate of change ofphase with distance is easily determined, because if we call ϕ=ω(t−r/c)the phase, and differentiate (partially) with respect to distance r, the rate of change, ∂ϕ/∂r , is
现在,在我们具体的波中,在频率和波长之间,有一个确定的关系,但是,上面关于k和 ω的定义,实际上是相当普遍的。也就是说,在其他的物理情形中,波长与频率,可能不是以同样的方式,而相关{?}。然而,在我们的情形中,相位随着距离的变化率,很容易被规定,因为,如果我们称ϕ=ω(t−r/c),为相位,那么,它对距离 r的微分(偏微分)、即距离的变化率∂ϕ/∂r,就是
(29.4)
There are many ways to represent the samething, such as
要表现此同一事物,有很多方式,例如
λ=ct0 (29.5)
ω=ck (29.6)
λν=c (29.7)
ωλ=2πc (29.8)
Why is the wavelength equal to ctimes the period? That’s very easy, of course, because if we sit still and waitfor one period to elapse, the waves, travelling at the speed c ,will move a distance ct0 , and will of course have movedover just one wavelength.
为什么波长,等于c乘以周期?这当然很容易,因为,如果我们坐着不动,等一个周期逝去,那么,以速度c传播的波,将会移动一个距离ct0,当然,就是正好移动了一个波长。
现在,在我们具体的波中,在频率和波长之间,有一个确定的关系,但是,上面关于k和 ω的定义,实际上是相当普遍的。也就是说,在其他的物理情形中,波长与频率,可能不是以同样的方式,而相关{?}。然而,在我们的情形中,相位随着距离的变化率,很容易被规定,因为,如果我们称ϕ=ω(t−r/c),为相位,那么,它对距离 r的微分(偏微分)、即距离的变化率∂ϕ/∂r,就是
(29.4)There are many ways to represent the samething, such as
要表现此同一事物,有很多方式,例如
λ=ct0 (29.5)
ω=ck (29.6)
λν=c (29.7)
ωλ=2πc (29.8)
Why is the wavelength equal to ctimes the period? That’s very easy, of course, because if we sit still and waitfor one period to elapse, the waves, travelling at the speed c ,will move a distance ct0 , and will of course have movedover just one wavelength.
为什么波长,等于c乘以周期?这当然很容易,因为,如果我们坐着不动,等一个周期逝去,那么,以速度c传播的波,将会移动一个距离ct0,当然,就是正好移动了一个波长。













