We see an interesting thing: if we divideeach focal length by the corresponding index of refraction we get the sameresult! This theorem, in fact, is general. It is true of any system of lenses,no matter how complicated, so it is interesting to remember. We did not provehere that it is general—we merely noted it for a single surface, but it happensto be true in general that the two focal lengths of a system are related inthis way. Sometimes Eq. (27.3)is written in the form
我们看到一个有趣的事情:如果我们把每个焦距,都除以相应的折射指数,那么,我们就会得到:同样的结果!事实上,这个定理,是普遍的。对于任何棱镜系统,它都成立,不论该系统多么复杂,所以,它很容易记。我们这里不去证明,其普遍性--我们只是对于单独的界面,指出这一点,但是,一个系统的两个焦距,以这种方式相关,碰巧普遍为真。有时,方程(27.3),可写为这种形式:
1/s+n/s′=1/f. (27.6)
This is more useful than (27.3)because we can measure f more easily than we can measure the curvatureand index of refraction of the lens: if we are not interested in designing alens or in knowing how it got that way, but simply lift it off a shelf, theinteresting quantity is f , not the n and the 1and the R !
这比(27.3)更有用,因为,测量一个系统的f,比测量其曲率和折射指数,更容易些:如果我们对于设计透镜、或者知道它是如何变成这样的,并不感兴趣,而只是从架子上,拿起一个透镜,感兴趣的量是f , 而不是 n、1、和 R !{?}
我们看到一个有趣的事情:如果我们把每个焦距,都除以相应的折射指数,那么,我们就会得到:同样的结果!事实上,这个定理,是普遍的。对于任何棱镜系统,它都成立,不论该系统多么复杂,所以,它很容易记。我们这里不去证明,其普遍性--我们只是对于单独的界面,指出这一点,但是,一个系统的两个焦距,以这种方式相关,碰巧普遍为真。有时,方程(27.3),可写为这种形式:
1/s+n/s′=1/f. (27.6)
This is more useful than (27.3)because we can measure f more easily than we can measure the curvatureand index of refraction of the lens: if we are not interested in designing alens or in knowing how it got that way, but simply lift it off a shelf, theinteresting quantity is f , not the n and the 1and the R !
这比(27.3)更有用,因为,测量一个系统的f,比测量其曲率和折射指数,更容易些:如果我们对于设计透镜、或者知道它是如何变成这样的,并不感兴趣,而只是从架子上,拿起一个透镜,感兴趣的量是f , 而不是 n、1、和 R !{?}













