To conclude this discussion, let usdescribe qualitatively what happens if we proceed further in analyzing a linearproblem with a given force, when the force is quite complicated. Out of themany possible procedures, there are two especially useful general ways that wecan solve the problem. 要总结这个讨论,让我们定性地描述一下,在下面的情况中,会发生什么,这种情况就是:设有一个线性问题,带有一个被给予的力,当此力相当复杂时,我们还要进一步分析此问题。要解这个问题,有很多可能的过程,其中有两种普遍方法,特别有用。One is this: suppose that we can solve it for special known forces,such as sine waves of different frequencies. We know it is child’s play tosolve it for sine waves. So we have the so-called “child’s play” cases. Now thequestion is whether our very complicated force can be represented as the sum oftwo or more “child’s play” forces. 一种是:假设对于具体已知的力,例如不同频率的正弦波,我们可以解它。我们知道,解正弦波这种问题,属于小孩把戏。所以,我们就有了所谓的“小孩把戏”的情况。现在的问题就是,我们非常复杂的力,是否可被表现为:两个以上的“小孩把戏”的力的总和。In Fig. 25–1 wealready had a fairly complicated curve, and of course we can make it morecomplicated still if we add in more sine waves. So it is certainly possible toobtain very complicated curves. 在图25-1中,我们已经有了一个相当复杂的曲线,当然,如果我们给它,加入更多正弦波的话,那么,我们也落让它,变得更复杂。所以,要得到更复杂的曲线,当然是可能的。And, in fact, the reverse is also true: practically every curve can beobtained by adding together infinite numbers of sine waves of differentwavelengths (or frequencies) for each one of which we know the answer. 事实上,相反的过程,也是真的:实践上,每条曲线,都可通过,把无限数目的不同波长(或频率)的正弦波,加在一起,而得到;对于每个正弦波,我们都知道它的解答。We just have to know how much of each sine wave to put in to makethe given F , and then our answer, x , is the corresponding sum of the F sine waves, each multiplied by its effective ratio of x to F .我们只需要知道,要生成被给予的力F,每个正弦波,要加入多少,因此,我们的答案x,就是相应的F正弦波的总和{?},每个都要乘以它的x对F的有效比率。 This method of solution is called the method of Fouriertransforms or Fourier analysis. We are not going to actually carryout such an analysis just now; we only wish to describe the idea involved.
这种解的方法,被称为傅立叶变换、或傅立叶分析。现在,我们还不会拿出这样一个分析;我们只是希望,描述所牵扯到的想法。
这种解的方法,被称为傅立叶变换、或傅立叶分析。现在,我们还不会拿出这样一个分析;我们只是希望,描述所牵扯到的想法。












