We wish to evaluate this integral from ρ=0to ρ=∞ . The variable t , of course, is to be heldfixed while we do the integral, so the only varying quantities are ρand r . Leaving out all the constant factors, including thefactor eiωt , for the moment, the integral we wishis
我们希望估算从ρ=0到 ρ=∞ 的积分。当然,积分时,变量t,被固定下来,所以,剩下的变量就是ρ和 r。现在,不考虑所有的常数因子,包括因子eiωt,我们希望的积分就是:

(30.13)
To do this integral we need to use therelation between r and ρ :
要做这个积分,我们需要使用r和 ρ之间的关系:
r2=ρ2+z2. (30.14)
Since z is independent of ρ, when we take the differential of this equation, we get
由于z,独立于ρ,所以,当我们对此方程求微分时,我们得到:
2rdr=2ρdρ,
which is lucky, since in our integral wecan replace ρdρ by rdr and the r will cancel theone in the denominator. The integral we want is then the simpler one
这很幸运,由于在我们的积分中,我们可以用rdr,替换ρdρ,且 r会消去分母中的那个r。因此,我们想要的积分,就简化为:

(30.15)
To integrate an exponential is very easy.We divide by the coefficient of r in the exponent and evaluate theexponential at the limits. But the limits of r are not the same asthe limits of ρ . When ρ=0 , we have r=z , sothe limits of r are z to infinity. We get for theintegral
积分指数,非常容易。我们用指数中r的系数,来除,然后,估算指数的限制。但是,r的限制,与ρ的限制,不一样。当ρ=0时 , 我们有 r=z ,所以,r的限制,就是z到无穷。对于积分,我们得到:

(30.16)
where we have written ∞ for (ω/c)∞, since they both just mean a very large number!
这里,我们把(ω/c)∞,写作∞,由于它们两个,都只不过意味着一个非常大的数。