2d_a (g_uv (d^a X^v)) - (d_u g_wv) (d_a X^w)(d^a X^v) = 0
2g_uv dd X^v + 2(d_w g_uv) (d_a X^w) (d^a X^v) - (d_u g_wv) (d_a X^w)(d^a X^v) = 0
中间项w v 互换,整体乘以 g^iu/2,后两项为Gamma^i_wv。得测地线方程。
(-det(g_uv+kF_uv))^(1/2)
=(det(delta^u_v + 2kg^uw F_wv + k^2 F^uw F_wv) det(g_uv)^2)^(1/4) 因为1/det(g^uv)=det(g_uv)
=(-det(g_uv))^(1/2) * exp((1/4) Tr ln (delta^u_v + 2kg^uw F_wv + k^2 F^uw F_wv )
=(-det(g_uv))^(1/2) * exp((1/4) Tr(2kg^uw F_wv + k^2 F^uw F_wv))
=(-det(g_uv))^(1/2) * (1+(1/4)k^2 F^uw F_wu) 因为对称与反对称的关系g^uw F_wu =0
第一题跟Polyakov 差一个 (根号-h) 不过fixed h了的应该没关系...
第二题前面的1好像不能把该消的项消了...