没有能量的空间并不是我们传统意义的真空。它没有空间度规,只有二维的电磁段。在量子场论中由卡西米尔效应描述。
(卡西米尔效应是量子场论的自然结果;量子场论陈述了所有各式各样的基本场—例如电磁场—必须在空间中每个点且处处被量子化。采单纯的观点来说,物理场可以想作是充满空间的振动球,之间以弹簧相连接。场的强度可以看作是球偏离其平衡位置的位移。场的振动可以传播,并由对应于此特殊场的适当波方程所主导。量子场论的二次量子化程序要求球与弹簧的组合是呈现量子化的,也就是说场强度在空间中每一点被量子化。正则式地(Canonically)来说,空间中每点的场是个谐振子,量子化则成了每点有个量子谐振子。场的激发则对应到粒子物理学中的基本粒子。然而,这样的图像会显示出:即使是真空也有极其复杂的结构。所有量子场论的计算都须与这样的真空模型有所关联。
真空因此暗地里具有了一颗粒子所拥有的全部性质:自旋,或光的极化,以及能量等等。若作平均,这些性质会彼此相销而得到零值——真空的“空”是以这样的概念维持着。其中一个重要的例外是真空能量或能量的真空期望值。简谐振子的量子化过程指出存在有一个最低的能量值,称作零点能量,此值不为零: 。)
在这里要补充一点任何的真空态都存在于有度规的已经由各种能量物质构成的复空间之中。只是我们在前期为了方便描述可以忽略其存在。同时真空的无形物质要同时拥有所有基本粒子的所拥有的全部性质:自旋,或光的极化,以及能量等等。也就是说所有粒子的初始态是相同的。
(卡西米尔效应是量子场论的自然结果;量子场论陈述了所有各式各样的基本场—例如电磁场—必须在空间中每个点且处处被量子化。采单纯的观点来说,物理场可以想作是充满空间的振动球,之间以弹簧相连接。场的强度可以看作是球偏离其平衡位置的位移。场的振动可以传播,并由对应于此特殊场的适当波方程所主导。量子场论的二次量子化程序要求球与弹簧的组合是呈现量子化的,也就是说场强度在空间中每一点被量子化。正则式地(Canonically)来说,空间中每点的场是个谐振子,量子化则成了每点有个量子谐振子。场的激发则对应到粒子物理学中的基本粒子。然而,这样的图像会显示出:即使是真空也有极其复杂的结构。所有量子场论的计算都须与这样的真空模型有所关联。
真空因此暗地里具有了一颗粒子所拥有的全部性质:自旋,或光的极化,以及能量等等。若作平均,这些性质会彼此相销而得到零值——真空的“空”是以这样的概念维持着。其中一个重要的例外是真空能量或能量的真空期望值。简谐振子的量子化过程指出存在有一个最低的能量值,称作零点能量,此值不为零: 。)
在这里要补充一点任何的真空态都存在于有度规的已经由各种能量物质构成的复空间之中。只是我们在前期为了方便描述可以忽略其存在。同时真空的无形物质要同时拥有所有基本粒子的所拥有的全部性质:自旋,或光的极化,以及能量等等。也就是说所有粒子的初始态是相同的。










