在三角形ABC中,令B=(1,0),C=(0,0)
A=(s,t); P=(x,y)计算可知当圆PAX,PBY,PCZ
共轴时三圆外心共线,此时计算可知P的方程为
f =((x/2 - (t*x^2 - 2*s*x*y + 2*t*x - t*y^2 + t)/(4*(t - s*y + t*x)) + (s*(x^2 + y^2 - 1))/(4*(s*x - s + t*y)) + 1/2)*(s^2*x^3 + s^2*x*y^2 + 2*s*t*x^2*y + 2*s*t*y^3 - 2*s*x^3 - 2*s*x*y^2 - t^2*x^3 + 4*t^2*x^2 - t^2*x*y^2 - 4*t^2*x + 4*t^2*y^2 - 2*t*x^2*y - 2*t*y^3 + x^3 + x*y^2))/(8*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 - 2*s*x*y - t^2*x*y + 2*t^2*y + t*x^2 - 2*t*x - t*y^2 + x*y)) - ((x/2 - (s^2*x^2*y + s^2*y^3 - 2*s*t*x^3 + 4*s*t*x^2 - 2*s*t*x*y^2 + 4*s*t*y^2 - 2*s*x^2*y - 2*s*y^3 - t^2*x^2*y - t^2*y^3 + 4*t^2*y + 2*t*x^3 - 4*t*x^2 + 2*t*x*y^2 - 4*t*y^2 + x^2*y + y^3)/(4*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 - 2*s*x*y - t^2*x*y + 2*t^2*y + t*x^2 - 2*t*x - t*y^2 + x*y)) - (t*x^2 - 2*s*x*y + 2*t*x - t*y^2 + t)/(4*(t - s*y + t*x)) + (s*(x^2 + y^2 - 1))/(4*(s*x - s + t*y)) + 1/2)*(s^2 - 2*s*x + t^2 + 2*t*y + x^2 + y^2))/(8*(t + y)) - (((s^2*x^3 + s^2*x*y^2 + 2*s*t*x^2*y + 2*s*t*y^3 - 2*s*x^3 - 2*s*x*y^2 - t^2*x^3 + 4*t^2*x^2 - t^2*x*y^2 - 4*t^2*x + 4*t^2*y^2 - 2*t*x^2*y - 2*t*y^3 + x^3 + x*y^2)/(4*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 -
A=(s,t); P=(x,y)计算可知当圆PAX,PBY,PCZ
共轴时三圆外心共线,此时计算可知P的方程为
f =((x/2 - (t*x^2 - 2*s*x*y + 2*t*x - t*y^2 + t)/(4*(t - s*y + t*x)) + (s*(x^2 + y^2 - 1))/(4*(s*x - s + t*y)) + 1/2)*(s^2*x^3 + s^2*x*y^2 + 2*s*t*x^2*y + 2*s*t*y^3 - 2*s*x^3 - 2*s*x*y^2 - t^2*x^3 + 4*t^2*x^2 - t^2*x*y^2 - 4*t^2*x + 4*t^2*y^2 - 2*t*x^2*y - 2*t*y^3 + x^3 + x*y^2))/(8*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 - 2*s*x*y - t^2*x*y + 2*t^2*y + t*x^2 - 2*t*x - t*y^2 + x*y)) - ((x/2 - (s^2*x^2*y + s^2*y^3 - 2*s*t*x^3 + 4*s*t*x^2 - 2*s*t*x*y^2 + 4*s*t*y^2 - 2*s*x^2*y - 2*s*y^3 - t^2*x^2*y - t^2*y^3 + 4*t^2*y + 2*t*x^3 - 4*t*x^2 + 2*t*x*y^2 - 4*t*y^2 + x^2*y + y^3)/(4*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 - 2*s*x*y - t^2*x*y + 2*t^2*y + t*x^2 - 2*t*x - t*y^2 + x*y)) - (t*x^2 - 2*s*x*y + 2*t*x - t*y^2 + t)/(4*(t - s*y + t*x)) + (s*(x^2 + y^2 - 1))/(4*(s*x - s + t*y)) + 1/2)*(s^2 - 2*s*x + t^2 + 2*t*y + x^2 + y^2))/(8*(t + y)) - (((s^2*x^3 + s^2*x*y^2 + 2*s*t*x^2*y + 2*s*t*y^3 - 2*s*x^3 - 2*s*x*y^2 - t^2*x^3 + 4*t^2*x^2 - t^2*x*y^2 - 4*t^2*x + 4*t^2*y^2 - 2*t*x^2*y - 2*t*y^3 + x^3 + x*y^2)/(4*(s^2*x*y - s*t*x^2 + 2*s*t*x + s*t*y^2 -


