最近本人在网上看到类似(x+y)³-x³-y³, (x+y)⁵-x⁵-y⁵, (x+y)⁷-x⁷-y⁷这样的分解因式的题目,于是突发奇想:把这些次数扩展到全体奇数,会是个怎样的情况
不妨记Fₙ(x, y)=(x+y)ⁿ-xⁿ-yⁿ(n为正奇数), 易得xy(x+y)|Fₙ(x, y);
n=6k-1(k∈N*)时,有(x²+xy+y²)|Fₙ(x, y)且(x²+xy+y²)²不整除Fₙ(x, y);
n=6k+1(k∈N*)时,有(x²+xy+y²)²|Fₙ(x, y)且(x²+xy+y²)³不整除Fₙ(x, y);
n=3(2k-1)(k∈N*)时,(x²+xy+y²)不整除Fₙ(x, y)
证明如下:记g(x)=F(x, 1)=(x+1)ⁿ-xⁿ-1, ω=-1/2+√3i/2, 则ω²=-1/2-√3i/2, 代入ω, 有g(ω)=(1+ω)ⁿ-ωⁿ-1=(-ω²)ⁿ-ωⁿ-1, g'(x)=n(x+1)ⁿ⁻¹-nxⁿ⁻¹, g'(ω)=n((-ω²)ⁿ⁻¹-ωⁿ⁻¹)
n=6k-1时(k∈N*),ω^(6k-1)=ω², (-ω²)^(6k-1)=-ω, g(ω)=0; g'(ω)=n(ω²-ω)≠0,则(x²+x+1)|g(x)且(x²+x+1)²不整除g(x)
n=6k+1时(k∈N*),g(ω)=-ω²-ω-1=0,g'(ω)=n(1-1)=0,g''(ω)=n(n-1)((-ω²)^(6k-1)-ω^(6k-1)=n(n-1)(-ω-ω²)≠0,则(x²+x+1)²|g(x)且(x²+x+1)³不整除g(x)
n=6k-3时(k∈N*),g(ω)=(-ω²)^(6k-3)-ω^(6k-3)-1=-3≠0,则(x²+x+1)不整除g(x)
再根据有关齐次多项式的相关知识,可以得到相应结论
下面是前几个Fₙ(x, y)分解因式之后的表达式:
F₁(x, y)=0
F₃(x, y)=3xy(x+y)
F₅(x, y)=5xy(x+y)(x²+xy+y²)
F₇(x, y)=7xy(x+y)(x²+xy+y²)²
F₉(x, y)=3xy(x+y)(3x⁶+9x⁵y+19x⁴y²+23x³y³+19x²y⁴+9xy⁵+3y⁶)
F₁₁(x, y)=11xy(x+y)(x²+xy+y²)(x⁶+3x⁵y+7x⁴y²+9x³y³+7x²y⁴+3xy⁵+y⁶)
F₁₃(x, y)=13xy(x+y)(x²+xy+y²)²(x⁶+3x⁵y+8x⁴y²+11x³y³+8x²y⁴+3xy⁵+y⁶)
于是给出一个结论,对于任意正奇数n≥9,Gₙ(x, y)=Fₙ(x, y)/(xy(x+y)(x²+xy+y²)^(3{(n+3)/6})({a}为a的小数部分)都不可约,这个结论是否正确?如果正确,请证明;如果不正确,请举出反例
不妨记Fₙ(x, y)=(x+y)ⁿ-xⁿ-yⁿ(n为正奇数), 易得xy(x+y)|Fₙ(x, y);
n=6k-1(k∈N*)时,有(x²+xy+y²)|Fₙ(x, y)且(x²+xy+y²)²不整除Fₙ(x, y);
n=6k+1(k∈N*)时,有(x²+xy+y²)²|Fₙ(x, y)且(x²+xy+y²)³不整除Fₙ(x, y);
n=3(2k-1)(k∈N*)时,(x²+xy+y²)不整除Fₙ(x, y)
证明如下:记g(x)=F(x, 1)=(x+1)ⁿ-xⁿ-1, ω=-1/2+√3i/2, 则ω²=-1/2-√3i/2, 代入ω, 有g(ω)=(1+ω)ⁿ-ωⁿ-1=(-ω²)ⁿ-ωⁿ-1, g'(x)=n(x+1)ⁿ⁻¹-nxⁿ⁻¹, g'(ω)=n((-ω²)ⁿ⁻¹-ωⁿ⁻¹)
n=6k-1时(k∈N*),ω^(6k-1)=ω², (-ω²)^(6k-1)=-ω, g(ω)=0; g'(ω)=n(ω²-ω)≠0,则(x²+x+1)|g(x)且(x²+x+1)²不整除g(x)
n=6k+1时(k∈N*),g(ω)=-ω²-ω-1=0,g'(ω)=n(1-1)=0,g''(ω)=n(n-1)((-ω²)^(6k-1)-ω^(6k-1)=n(n-1)(-ω-ω²)≠0,则(x²+x+1)²|g(x)且(x²+x+1)³不整除g(x)
n=6k-3时(k∈N*),g(ω)=(-ω²)^(6k-3)-ω^(6k-3)-1=-3≠0,则(x²+x+1)不整除g(x)
再根据有关齐次多项式的相关知识,可以得到相应结论
下面是前几个Fₙ(x, y)分解因式之后的表达式:
F₁(x, y)=0
F₃(x, y)=3xy(x+y)
F₅(x, y)=5xy(x+y)(x²+xy+y²)
F₇(x, y)=7xy(x+y)(x²+xy+y²)²
F₉(x, y)=3xy(x+y)(3x⁶+9x⁵y+19x⁴y²+23x³y³+19x²y⁴+9xy⁵+3y⁶)
F₁₁(x, y)=11xy(x+y)(x²+xy+y²)(x⁶+3x⁵y+7x⁴y²+9x³y³+7x²y⁴+3xy⁵+y⁶)
F₁₃(x, y)=13xy(x+y)(x²+xy+y²)²(x⁶+3x⁵y+8x⁴y²+11x³y³+8x²y⁴+3xy⁵+y⁶)
于是给出一个结论,对于任意正奇数n≥9,Gₙ(x, y)=Fₙ(x, y)/(xy(x+y)(x²+xy+y²)^(3{(n+3)/6})({a}为a的小数部分)都不可约,这个结论是否正确?如果正确,请证明;如果不正确,请举出反例