哥德巴赫猜想吧 关注:6,387贴子:739,147
  • 52回复贴,共1

论证Collatz猜想

只看楼主收藏回复

论证Collatz猜想
.
摘要:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数,就把它乘以3再加1。在这样一个变换下,就得到了一个新的自然数。如果反复使用这个变换,就会得到一串自然数。猜想就是:反复进行上述运算后,最后结果为1。称为Collatz猜想或者3X+1猜想。
分析可知:任取一个起始自然数X,按照规则经过若干变换,总是通过一个特定的奇数节点T_m,进入【递降通道】2^n,最终落入4→2→1,据此可将全体自然数按照不同节点T_m分类,然后根据所有节点T_m逆向递进追溯【起始数】X,X覆盖全部自然数。据此推定Collatz猜想为真。
关键词:递降通道,起始数,入口节点,逆向递进追溯,
一,概念,定义,符号
1,【起始数】:任意指定的自然数 1,2,3,⋯
2,猜想的操作规则:【起始数】是奇数,则乘以3再加1;是偶数则除以2^n。
3,【递降通道】:2^n,2^(n-1),⋯,2^1,2^0;n=2m,m=1,2,3,⋯
4,【递降通道】入口节点T_m:T_m=1/3(2^2m-1);m=1,2,3,⋯;入口节点T_m序列:
1,5,21,85,341,1365,5461,21845,⋯
5,【递降盲道】:2^(2m+1),m=1,2,3,⋯;不存在入口节点T_m的【递降通道】。
6,【正向变换】:按照猜想操作规则,将【起始数】X逐步变换,直至进入【递降通道】的操作方法和过程。
7,【逆向递进追溯】:从【递降通道】入口节点T_m,按照Collatz猜想的变换规则,反方向变换操作,追溯【起始数】X的方法和过程。
8,2^n,2^(n-1),⋯,2^1,2^0;n≥0;2^0=1称为【递降通道】的底。
9,最短的【递降通道】是4→2→1;最小的【递降盲道】是 2^1。


IP属地:上海1楼2025-07-18 07:00回复
    二,两个逆向追溯公式
    逆向递进追溯【起始奇数X_i】公式
    X_i=1/3 (2^k X-1),X=2t+1≥1,3|(2^k X-1)
    逆向递进追溯【起始偶数X_j】公式
    X_j=2^k X,X=2t+1≥1,k=1,2,3,⋯
    两个参考实例
    实例1:X=7,
    X_i=1/3 (2^k X-1)=1/3 (2^2*7-1)=9
    X_j=2^k X=2^k*7=14,28,56,112,224,448,⋯
    实例2:X=11,
    X_i=1/3 (2^k X-1)=1/3 (2^1*11-1)=7
    X_j=2^k X_i=2^k*11=22,44,88,176,352,704,⋯
    三,若干引理
    按照Collatz猜想的变换规则,以X_j=2^2m为【起始数】的变换,称为递降通道。
    可以证明下列引理:
    引理1:【递降通道】入口节点T_m=1/3(2^2m-1),以T_m为起始数,则:3T_m+1=2^2m 一步到位,直接进入递降通道2^2m→2^(2m-1)→⋯→2^1→2^0。
    引理2:【递降通道】入口节点T_m=1/3(2^2m-1),以偶数2^k T_m为起始数,则:经过k+1个步骤即可进入递降通道。
    引理3:【递降通道】入口节点T_m=1/3 (2^2m-1),3|m时,只存在依据T_m逆向递进追溯的【起始偶数】X_j=2^k T_m,k=1,2,3,⋯;不存在依据T_m逆向递进追溯的其它【起始奇数】
    X_i=1/3(2^k T_m-1)
    引理4:【递降通道】入口节点T_m=1/3(2^2m-1),m>0;存在最小值a,使得3|(2^a T_m-1),推知:依据【递降通道】入口节点T_m=1/3(2^2m-1),逆向递进追溯的【起始奇数】最小值是
    X_o=1/3 (2^a T_m-1), a=1 or 2 ;
    引理5:设(3,T_m )=1,依据【递降通道】入口节点T_m,逆向递进追溯的【起始奇数】X_i和【起始偶数】X_j,均有无穷多个值。
    引理6:存在无穷多个【递降通道】入口节点:
    T_m=1/3 (2^2m-1),m=1,2,3,⋯
    引理7:【递降通道】入口节点T_m=1/3(2^2m-1),数列:
    2^1 T_m-1,2^2 T_m-1,2^3 T_m-1,2^4 T_m-1,⋯,2^x T_m-1
    各个项元素中,两个相邻的项元素,有且仅有一个是3的倍数。
    参考实例:
    T_2=5: 9,19,39,79,159,319,639,1279,2559,⋯,2^x*5-1
    T_4=85: 169,339,679,1359,2719,5439,10879,21759,⋯,2^x*85-1
    T_5=341: 681,1363,2727,5455,10911,21823,436487 ,87295,⋯,2^x*341-1
    引理8:【递降通道】入口节点 T_m=1/3(2^2m-1)
    (1)(3,T_m )=3,不存在依据T_m逆向递进追溯的【起始奇数】
    X_i=1/3(2^x T_m-1)。
    (2)(3,T_m )=1,依据T_m逆向递进追溯的【起始奇数】最小值是
    X_o=1/3 (2^1 T_m-1) 或者 X_o=1/3(2^2 T_m-1)
    (3)依据T_m逆向递进追溯的【起始偶数】X_j=2^x T_m,最小值是
    X_j=2T_m;
    (4)依据T_m逆向递进追溯的【起始数】没有最大值。
    引理9:不超过【递降通道】入口节点T_m=1/3(2^2m-1)的【起始数】X_i&X_j,经过若干变换,都可以进入入口节点数值不超过T_m的【递降通道】。
    引理10:【递降通道】入口节点T_m=1/3(2^2m-1),【起始奇数】X_i=1/3(2^x T_m-1),则X_i可按照关系式3X_i+1=2^x T_m,经过x+1次 转换为【递降通道】入口节点T_m;
    参考实例:
    T_m=5,X_i=1/3 (2^x T_m-1)=1/3 (2^1*5-1)=3,x=1
    3X_i+1=3*3+1→10→5
    T_m=5,X_i=1/3 (2^x T_m-1)=1/3 (2^3*5-1)=13,x=3
    3X_i+1=3*13+1→40→20→10→5
    T_m=5,X_i=1/3 (2^x T_m-1)=1/3 (2^5*5-1)=53,x=5
    3X_i+1=3*53+1→160→80→40→20→10→5


    IP属地:上海2楼2025-07-18 07:03
    收起回复
      2025-08-06 05:32:43
      广告
      不感兴趣
      开通SVIP免广告
      四,两个推论表明Collatz猜想为真
      .
      推论1:设【递降通道】入口节点T_m=1/3 (2^2m-1),若【起始数】
      X≤[1/3 (2^2 T_m-1)],
      则X经过若干变换后,均可进入【入口节点】不超过 T_m的【递降通道】 。
      .
      推论2:设【递降通道】入口节点T_m=1/3 (2^2m-1),自然数m趋于无穷,依据T_m逆向递进追溯的【起始数】X≤[1/3(2^2 T_m-1)] 趋于无穷。则依据所有【递降通道】入口节点T_m,逆向递进追溯的【起始数】X≤[1/3(2^2 T_m-1)],可以覆盖的连续自然数趋于无穷。
      证明:由于T_(m+1)>2T_m,根据引理7,8,9,10,即知推论1&2为真。Collatz猜想为真。
      .
      五,两个参考实例
      1,T_m=T_2=5,
      X≤[1/3 (2^2 T_m-1)]=X_i=[1/3 (2^2*5-1)]=6, X=6,5,4,3,2,1
      6→3→10→5→16→8→4→2→1,
      起始数6的变换过程中,蕴含了起始数为5,4,3 ,2,1的变换。
      实例验证表明:所有【起始数】X≤[1/3 (2^2 T_2-1)]=[1/3 (2^2*5-1)]=6,
      经过若干步骤变换后,均可进入不超过入口节点T_2=1/3 (2^4-1)=5的【递降通道】。
      .
      2,T_m=T_4=85,
      X≤[1/3 (2^2 T_m-1)]=[1/3 (2^2*85-1)]=113
      X=113,112,111,110,109,108,107,106,⋯,85,⋯,21,⋯,5,⋯,1
      113→340→170→85
      112→56→28→14→7→22→11→34→17→52→26→13→40→20→10→5
      111→334→167→502→251→754→377→1132→566→283→850→425→1267→638→319→958→479→1438→719→2158→1079→3238→1619→4858→2429→7288→3644→1822→911→2734→1367→4102→2051→6154→3077→9232→4616→2308→1154→577→1732→866→433→1300→650→325→976→488→244→122→61→184→92→46→23→70→35→106→53→160→80→40→20→10→5
      110→55→166→83→250→125→376→188→94→47→142→71→214→107→322→161→484→242→121→364→182→91→274→137→412→206→103→310→155→466→233→700→350→175→526→263→790→395→1186→593→1780→890→445→1336→668→334→167→502→251→754→377→1132→566→283→850→425→1276→638→319→958→479→1438→719→2158→1079→3238→1619→4858→2429→7288→3644→1822→911→2734→1367→4102→2051→6154→3077→9232→4616→2308→1154→577→1732→866→433→1300→650→325→976→488→244→122→61→184→92→46→23→70→35→106→53→160→80→40→20→10→5
      .
      86→43→130→65→196→98→49→148→74→37→112→56→28→14→7→22→11→34→17→52→26→13→40→20→10→5
      实例验证可知:所有【起始数】满足下列条件
      X≤[1/3 (2^2 T_4-1)]=[1/3 (2^2*85-1)]=113
      经过若干步骤变换后,均可进入不超过入口节点T_4=1/3 (2^8-1)=85的【递降通道】。


      IP属地:上海3楼2025-07-18 07:06
      收起回复
        663,788,609 > (4*T_15 - 1) / 3 = (4*357913941-1) / 3 = 477218588
        663,788,609 < (4*T_16 - 1) / 3 = (4*1431655765 - 1) / 3 = 1,908,874,353
        推知:663,788,609 经过若干变换必可进入 :
        入口节点不超过 T_16=1,431,655,765 的【递降通道】。


        IP属地:上海4楼2025-07-24 13:02
        收起回复
          T_6 = 1365,X_o = (4*T_6 - 1) / 3 = 1819
          T_7 = 5461,1819 < (X =1978) < (4*T_7 - 1) / 3 = 7281
          推知:1978 经过若干变换必可进入 :
          入口节点不超过 T_6 = 1365 的【递降通道】。
          .
          T_10 = 34 9525,X_o = (4*T_10 - 1) / 3 = 46 6033
          T_11 = 139 8101, 46 6033 < (X = 71 1245) < (4*T_11 - 1) / 3 = 186 4134
          推知:71 1245 经过若干变换必可进入 :
          入口节点不超过 T_10 = 46 6033 的【递降通道】。
          .
          T_13 = 2236 9621,X_o = (4*T_13 - 1) / 3 = 2982 6161
          T_14 = 8947 8495,2982 6161 < (X = 9461 8813) < (4*T_14 - 1) / 3 = 1 1930 4646
          推知:94618813 经过若干变换必可进入 :
          入口节点不超过 T_13 = 2982 6161 的【递降通道】。
          .
          比较:663,788,609 经过若干变换必可进入 :
          入口节点不超过 T_15 = 3 5791 3941 的【递降通道】。
          .
          1978 < 71 1245 < 9461 8813 < 6 6378 8609
          小数字的【递降通道】入口节点,与大数字的【递降通道】入口节点可能相同,也可能不同。
          这几个自然数X的【递降通道】入口节点T_m 都存在相同的最小值 1;但【递降通道】入口节点T_m的最大值各不相同。


          IP属地:上海5楼2025-07-25 16:32
          收起回复


            IP属地:江苏来自Android客户端6楼2025-07-27 08:30
            收起回复
              通过观察前面的公式和推论不能确定入口节点,而只能追溯一下范围,也就是不能将起始数进行明确分类,然后单独推导出最终归宿1,这就完全忽略了中间过程!


              IP属地:江苏来自Android客户端7楼2025-07-28 14:16
              回复
                换句话说,我认为科拉茨的猜测如果以提问的形式表现出来更能说明问题,即所有正整数N经科拉茨提出的法则变换后最终结果是唯一的吗?有没有可能出现循环?有没有可能结果是在不同的区域站点相对逐渐变大,结果出现不确定性?


                IP属地:江苏来自Android客户端8楼2025-07-28 14:27
                收起回复