你以为的源世界本源
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9
实际上的源世界本源
Z(s)=n=1∑∞ns1=p∈P∏1−p−s1∮γf(z)z−z0dz=2πi⋅f(z0)\oint_{\gamma} \frac{f(z)}{z - z_0} \, dz = 2\pi i \cdot f(z_0)∮γz−z0f(z)dz=2πi⋅f(z0)ψ(x,t)=mωπℏ⋅e−mωx22ℏ⋅e−i(n+12)ωt\psi(x, t) = \sqrt{\frac{m\omega}{\pi \hbar}} \cdot e^{-\frac{m\omega x^2}{2\hbar}} \cdot e^{-i\left(n + \frac{1}{2}\right)\omega t}ψ(x,t)=πℏmω⋅e−2ℏmωx2⋅e−i(n+21)ωt
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9
实际上的源世界本源
Z(s)=n=1∑∞ns1=p∈P∏1−p−s1∮γf(z)z−z0dz=2πi⋅f(z0)\oint_{\gamma} \frac{f(z)}{z - z_0} \, dz = 2\pi i \cdot f(z_0)∮γz−z0f(z)dz=2πi⋅f(z0)ψ(x,t)=mωπℏ⋅e−mωx22ℏ⋅e−i(n+12)ωt\psi(x, t) = \sqrt{\frac{m\omega}{\pi \hbar}} \cdot e^{-\frac{m\omega x^2}{2\hbar}} \cdot e^{-i\left(n + \frac{1}{2}\right)\omega t}ψ(x,t)=πℏmω⋅e−2ℏmωx2⋅e−i(n+21)ωt










