网页资讯视频图片知道文库贴吧地图采购
进入贴吧全吧搜索

 
 
 
日一二三四五六
       
       
       
       
       
       

签到排名:今日本吧第个签到,

本吧因你更精彩,明天继续来努力!

本吧签到人数:0

一键签到
成为超级会员,使用一键签到
一键签到
本月漏签0次!
0
成为超级会员,赠送8张补签卡
如何使用?
点击日历上漏签日期,即可进行补签。
连续签到:天  累计签到:天
0
超级会员单次开通12个月以上,赠送连续签到卡3张
使用连续签到卡
08月03日漏签0天
纯几何吧 关注:17,554贴子:94,806
  • 看贴

  • 图片

  • 吧主推荐

  • 游戏

  • 4回复贴,共1页
<<返回纯几何吧
>0< 加载中...

9886K005

  • 只看楼主
  • 收藏

  • 回复
  • 等水的鱼
  • 知名人士
    10
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼


  • 南极洲首富
  • 小吧主
    14
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
T神的,以前写过个很繁杂的证明


2025-08-03 12:09:32
广告
不感兴趣
开通SVIP免广告
  • 一呀k
  • 知名人士
    11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
△ABC外心O,垂心H,九点圆圆心N.重心G,G关于N对称点为G',P,gP等角共轭,PgP与双曲线(ABCHP)第二交点为D,Na,Nb,Nc分别为BPC,CPA,APB的九点圆圆心,P的卡诺△OaObOc,P的反角共轭点P'的卡诺△Oa'Ob'Oc',△OaObOc的重心为Gp,△Oa'Ob'Oc'重心Gp',易知Gp与Gp'关于G对称,POa',POb',POc'中点为Na,Nb,Nc,Oa'关于G'作-1/2位似得点Na',易知AHNa'共线,作PE=3G'Gp'(向量),易证Ob'EOc'与NcNa'Nb位似.
引理1:BDC对NcNa'Nb的类透视锥线过H.
证明:由9934可得OE⫽HD,即证.
引理2:若P在△ABC的K005,则D关于△ABC的反角共轭点在OP上.
证明:设ABCP和ABCgP的Poncelet点分别为X,Y,OP,OgP方向上无穷远点的等角共轭点分别为Y',X',X'P与圆(ABC)第二交点F,X为HX'中点,Y为HY'中点,XY为P和gP关于△ABC的垂足圆与九点圆的根轴,故PgP⊥X'Y',从而(有向角)∠X'PD=∠PX'Y'+90°=∠FX'Y'+90°=∠OPH(取斯坦纳线),即证.
引理3:若P在△ABC的K005,则OOa'Ob'Oc'PE共等轴双曲线.
证明:由引理2和10029知OOa'Ob'Oc'P共等轴双曲线,由10031知E也在其上.
引理4:若P在△ABC的K005,BDC对NcNa'Nb的类透视锥线过P.
证明:设P关于OaObOc的补点与O连线与过OaObOcO的等轴双曲线Γ第二交点为F,因为△OaObOc与△Oa'Ob'Oc'逆相似,由类透视锥线的结论,F与E为逆相似对应点,设圆(Oa'Ob'Oc')与Γ第四交点为J,只需证JF∥OP,视角转化到△OaObOc,由Liang-Zelich定理、引理2及10013即证.
回到原题,引理1和引理4表明△BDC和△NcNa'Nb正交,证毕.
作为推论,设P在AH上投影为Pa,则△NbNcE与△CBD逆相似.


  • 一呀k
  • 知名人士
    11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
楼上引理4提到的类透视锥线的结论是关于逆相似三角形的,简单介绍一下.
△ABC与△DEF逆相似,△ABC对△DEF的类透视锥线记作Γ_1,△DEF对△ABC的类透视锥线记作Γ_2.
①两三角形正交,正交中心为对应类透视锥线与外接圆的第四交点(如△ABC对△DEF的正交中心为Γ_1与圆(ABC)的第四交点),Γ_1,Γ_2渐近线方向为逆相似的对称轴方向(BC与EF内外角分线方向).以上导角易证.
②P∈Γ_1,△ABC∪P逆相似于△DEF∪Q,则Q∈Γ_2,若AD,BE,CF共点O,POQ共线.
证明:设△ABC对△DEF正交中心S_1,△DEF对△ABC正交中心S_2,导角知△ABC∪S_1逆相似于△DEF∪S_2,故Γ_1逆相似于Γ_2,Q∈Γ_2,逆相似给出射影对应P→Q,故O[P,A,B,C]=O[Q,D,E,F],POQ共线.
③若AD,BE,CF共点O,逆相似的不动点K为Γ_1与Γ_2除O外的第二交点,两点M,N满足AM,BM,CM分别平行于DN,EN,FN,则MKN共线.
K∈Γ_1∩Γ_2是②的推论,由5000.2.4.1 (5),MNK共线.


登录百度账号

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!
  • 贴吧页面意见反馈
  • 违规贴吧举报反馈通道
  • 贴吧违规信息处理公示
  • 4回复贴,共1页
<<返回纯几何吧
分享到:
©2025 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示