汪峰在吧 关注:271,963贴子:21,597,755
  • 15回复贴,共1

嗯,帮忙看看吧

只看楼主收藏回复

从无穷开始,无穷的无穷次方,无穷的无穷的无穷次方,重复无穷次,我们得到了A0
无穷的A0次方等于A0,遇到了限制,无穷的A0加1次方等于A0乘无穷,加1跳出了限制
无穷的A0加1次方,无穷的无穷的A0加1次方,无穷重复等于A1,A1重复A0的过程
无穷的A1加1次方,无穷的无穷的A1加1次方,无穷重复又等于A2
以此类推,A3,A4,A5,A无穷,AA1,AAA1,无穷重复得到B1,B与A的迭代方法类似
子母是有限的,我们需要一种简便的表示方法,“无”
无_0_0=A0,无_0_1=A1 无_1_0=B1,无_1_1=B2
以此类推,无_无穷_0,无_A0_0,
还可以嵌套,将无_1_0中的1替换成无_1_0,再将这个嵌套了一步的式子中的1替换为无_1_0
嵌套无穷次得到了一个新的存在,无_1_0_0,如果将无_1_0中的1替换成无_1_0_0,那么还是等于无_1_0_0
不出意外的,可以无_1_0_0中的1也替换成无_1_0_0,再将这个新式子中的1替换成无_1_0_0
再次无穷重复便得到了无_1_0_0_0,以此类推,还会有无_1_0_0_0_0,无_1_0_0_0_0_0,无穷重复
但这样还是太麻烦了不是么,将他们折起来,如,无_1_0_0等于无_折叠_1_2
无_1_0_0_0_0等于无_折叠_1_4
类似的,无_折叠_1_无穷,还可以嵌套,将这个式子中的无穷替换为无_折叠_1_无穷,再将这个式子中的无穷也替换成无_折叠_1_无穷,无穷的重复,又得到了一个新的存在,假如将这个新的存在再次按照之前的方法替换无_折叠_1_无穷,那就会又一次遇到限制
嗯,该怎么办呢,再次折叠,将上述的一切记为超_1,我们在过去遇到了许多限制,当然,未来也会有这些限制,“超”的存在便是未了表现这些限制,“超”能不断的创造出新的限制,或者说是不动点
对于任意的存在,如果存在一个值,任意存在_值等于值,则称这个值是任意存在的不动点
超_2便是紧接超_1之后的一个新的不动点,以此类推,超_3是在超_2之后的一个新的不动点
又能嵌套了,将超_1中的1替换为超_1,无尽的重复这个过程,便又能得到一个新的存在


IP属地:中国台湾1楼2025-01-07 19:51回复
    我们又能将这个新的存在表示为,超_1_0,超_1_0也是一个不动点
    超_2_0则又是超_1_0的不动点,以此类推,超_3_0,超_4_0,超_无穷_0
    又能嵌套了,将超_1_0中的1替换成超_1_0,这样无穷的替换
    最终得到超_1_0_0,超_1_0_0之上仍有更多的“不动点”
    最终得到,超_极限,超_极限是超_1_0_0_0_0……(省略任意值个)的极限


    IP属地:中国台湾2楼2025-01-07 19:56
    回复
      2026-01-20 03:14:38
      广告
      不感兴趣
      开通SVIP免广告
      d


      IP属地:中国台湾3楼2025-01-07 19:57
      回复
        额,不好确认,给你发个无限指到超指数塔的公式你看看吧!


        IP属地:上海来自Android客户端4楼2025-01-07 20:07
        收起回复
          可超_极限难道就是最终的极限了么?不,将超_极限记为超_极限_0
          再超_极限_0之上仍有更为高阶的不动点,超_极限_1便是一个新的不动点
          在此之上,还有超_极限_无穷等,再次嵌套吧,将这个式子中的无穷改为超_极限_1,再将这个式子中的1改成超_极限_1,再次无尽的嵌套,最终记为超_极限_极限_0,在这个之上,仍有超_极限_极限_1,再次嵌套吧,将1替换成超_极限_极限_1,这样的嵌套再次重复,最终得到超_极限_极限_极限_1
          超_极限_极限_极限_1,我们再次将这些折叠,超_折叠_1=超_极限_1,超_折叠_2等于超_极限_极限_1
          还是要替换,将超_折叠_1中的1替换成超_折叠_1,再次无尽替换,得到超_折叠_折叠_2,
          不必多说,还会有超_折叠_折叠_折叠_折叠_1
          还要将这些折叠给折叠起来,超_超折叠_1等于超_折叠_1,超_超折叠_2等于超_折叠_折叠_1
          同理,多重超_超折叠也能折叠成超超折叠,如超_超超折叠_2等于超_超折叠_超折叠_1
          多重超超折叠也能折叠成超超超折叠,最后抵达超超超超……折叠


          IP属地:中国台湾5楼2025-01-07 20:12
          回复
            很难扩展了不是么,我们定义一个新的“终”,最后的超超超超……折叠也仅仅等于,终_1
            这个终和超的结构近乎相同,只不过更为高阶了一些,仍然存在着如“终_终折叠_1”“终_终终终终……折叠_1”之类的东西
            最后所有的终的极限等于终终_1
            终终的结构与终和超一样
            以此类推,终终之上仍然存在着多重叠加终


            IP属地:中国台湾6楼2025-01-07 20:19
            回复
              在这之后呢,我们之前所有的不动点仅仅是下一个不动点,可是呢,这样实在是太难增长了,
              超终_1等于之前的一切,超终_2并不是紧随与超终_1的不动点,在超终_1与超终_2之间的不动点足足存在超终_1个,超终_2与超终_3之间则存在超终_2个不动点,以此类推,超终_4,超终_无穷
              接下来又是那样,超终_超终_1,超终折叠之类的


              IP属地:中国台湾9楼2025-01-07 20:31
              回复
                在之前的叠加中,不动点的叠加也仅仅只是用加法而已,哪怕是超终_1到超终_2,仅仅只是不动点加了1,而现在呢,我们将用乘法添加不动点,我们继续往里面添加,超终的极限记为N,N字内包含了许多不动点,将这些不动点数记为C,N2中包含了C的C的C的C的……次方个不动点


                IP属地:中国台湾10楼2025-01-07 20:40
                回复
                  2026-01-20 03:08:38
                  广告
                  不感兴趣
                  开通SVIP免广告
                  添加不动点的速度还是慢,这时候我们就需要新的运算了,将C的C的C的C的……次放折叠为C的重次方C,C的重次方的C的重次方的C的重次方的C……折叠为C的重2次方,以此类推,重3次方,重4次方,重无穷次方,最终达到重N次方


                  IP属地:中国台湾11楼2025-01-07 20:47
                  回复
                    太繁琐了,不想看


                    IP属地:湖北来自Android客户端12楼2025-01-09 18:37
                    回复