f^(n)(x)= [(-1)^n/(1+x)^(n+1)].e^(1/x)
n=0, f(x) = [1/(1+x)].e^(1/x)
n=1, f'(x) = [-1/(1+x)^2]e^(1/x)
y=xf(x)
y'
= f(x) + xf'(x)
=[1/(1+x)].e^(1/x) - [x/(1+x)^2]e^(1/x)
=[1/(1+x)^2]e^(1/x)
=-f'(x)
y^(n+1)
=-f^(n+1)(x)
=[(-1)^(n+2)/(1+x)^(n+2)].e^(1/x)
n=0, f(x) = [1/(1+x)].e^(1/x)
n=1, f'(x) = [-1/(1+x)^2]e^(1/x)
y=xf(x)
y'
= f(x) + xf'(x)
=[1/(1+x)].e^(1/x) - [x/(1+x)^2]e^(1/x)
=[1/(1+x)^2]e^(1/x)
=-f'(x)
y^(n+1)
=-f^(n+1)(x)
=[(-1)^(n+2)/(1+x)^(n+2)].e^(1/x)











