由于我不知道BOCF的I函数在ψ(I+ψ_I(I))之后该怎么进行下去了,所以我先采用MOCF分析
\表示下标分隔符套娃的极限
f(n(0/_{0\1}1)1)=f_ψ(ψ_I(0))(n)=f_ψ(I)(n)
f(n(0/1/_{0\1}1)1)=f_ψ(ψ_I(0)+1)(n)
f(n(0/_{1}1/_{0\1}1)1)=f_ψ(ψ_I(0)+Ω_2)(n)
f(n((0/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)2)(n)
f(n((0/1/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)2+1)(n)
f(n((0/_{0\1}2)/_{0\1}1)1)=f_ψ(ψ_I(0)3)(n)
f(n((0/_{0\1}0/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)^2)(n)
f(n((0[1]_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)^ω)(n)
f(n((0/_{1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(0))(n)
f(n((0/_{0/_{0\1}1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(ψ_I(0)))(n)
f(n((0/_{0/_{1\1}1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(ψ_(Ω_ψ_I(0)+1)(0)))(n)
f(n((0/_{0\2}1)/_{0\1}1)1)=f_ψ(Ω_ψ_I(0)+1)(n)
f(n((0/_{1\2}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+2)(0))(n)
f(n((0/_{0\3}1)/_{0\1}1)1)=f_ψ(Ω_ψ_I(0)+2)(n)
f(n((0/_{0\0\_{0\2}1}1)/_{0\1}1)1)=f_ψ(Ω_Ω_ψ_I(0)+1)(n)
f(n(0/_{0\1}2)1)=f_ψ(ψ_I(1))(n)=f_ψ(I2)(n)
f(n((0/_{0\1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_I(0))(n)
f(n((0/_{1\1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_(Ω_ψ_I(0)+1)(0))(n)
f(n((0/_{0\2}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)+1)(n)
f(n((0/_{1\2}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_(Ω_ψ_I(0)+2)(0))(n)
f(n((0/_{0\3}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)+2)(n)
f(n((0/_{0\0/_{0\1}1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)2)(n)
f(n((0/_{0\0/_{0\2}1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_Ω_ψ_I(0)+1)(n)
f(n((0/_{0\1}2)/_{0\1}2)1)=f_ψ(ψ_I(1)2)(n)
f(n((0/_{1\1}2)/_{0\1}2)1)=f_ψ(ψ_(Ω_ψ_I(1)+1)(0))(n)
f(n((0/_{0\2}2)/_{0\1}2)1)=f_ψ(Ω_ψ_I(1)+1)(n)
f(n((0/_{0\0/_{0\1}2}2)/_{0\1}2)1)=f_ψ(Ω_ψ_I(1)2)(n)
f(n((0/_{0\0/_{0\2}2}2)/_{0\1}2)1)=f_ψ(Ω_Ω_ψ_I(1)+1)(n)
f(n(0/_{0\1}3)1)=f_ψ(ψ_I(2))(n)=f_ψ(I3)(n)
f(n(0/_{0\1}(0/_{0\1}1))1)=f_ψ(ψ_I(ψ_I(0)))(n)=f_ψ(Iψ_I(I))(n)
f(n(0/_{0\1}(0/_{0\1}2))1)=f_ψ(ψ_I(ψ_I(1)))(n)=f_ψ(Iψ_I(I2))(n)
f(n(0/_{0\1}0/_{0\1}1)1)=f_ψ(I)(n)=f_ψ(I^2)(n)
\表示下标分隔符套娃的极限
f(n(0/_{0\1}1)1)=f_ψ(ψ_I(0))(n)=f_ψ(I)(n)
f(n(0/1/_{0\1}1)1)=f_ψ(ψ_I(0)+1)(n)
f(n(0/_{1}1/_{0\1}1)1)=f_ψ(ψ_I(0)+Ω_2)(n)
f(n((0/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)2)(n)
f(n((0/1/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)2+1)(n)
f(n((0/_{0\1}2)/_{0\1}1)1)=f_ψ(ψ_I(0)3)(n)
f(n((0/_{0\1}0/_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)^2)(n)
f(n((0[1]_{0\1}1)/_{0\1}1)1)=f_ψ(ψ_I(0)^ω)(n)
f(n((0/_{1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(0))(n)
f(n((0/_{0/_{0\1}1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(ψ_I(0)))(n)
f(n((0/_{0/_{1\1}1\1}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+1)(ψ_(Ω_ψ_I(0)+1)(0)))(n)
f(n((0/_{0\2}1)/_{0\1}1)1)=f_ψ(Ω_ψ_I(0)+1)(n)
f(n((0/_{1\2}1)/_{0\1}1)1)=f_ψ(ψ_(Ω_ψ_I(0)+2)(0))(n)
f(n((0/_{0\3}1)/_{0\1}1)1)=f_ψ(Ω_ψ_I(0)+2)(n)
f(n((0/_{0\0\_{0\2}1}1)/_{0\1}1)1)=f_ψ(Ω_Ω_ψ_I(0)+1)(n)
f(n(0/_{0\1}2)1)=f_ψ(ψ_I(1))(n)=f_ψ(I2)(n)
f(n((0/_{0\1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_I(0))(n)
f(n((0/_{1\1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_(Ω_ψ_I(0)+1)(0))(n)
f(n((0/_{0\2}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)+1)(n)
f(n((0/_{1\2}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+ψ_(Ω_ψ_I(0)+2)(0))(n)
f(n((0/_{0\3}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)+2)(n)
f(n((0/_{0\0/_{0\1}1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_ψ_I(0)2)(n)
f(n((0/_{0\0/_{0\2}1}1)/_{0\1}2)1)=f_ψ(ψ_I(1)+Ω_Ω_ψ_I(0)+1)(n)
f(n((0/_{0\1}2)/_{0\1}2)1)=f_ψ(ψ_I(1)2)(n)
f(n((0/_{1\1}2)/_{0\1}2)1)=f_ψ(ψ_(Ω_ψ_I(1)+1)(0))(n)
f(n((0/_{0\2}2)/_{0\1}2)1)=f_ψ(Ω_ψ_I(1)+1)(n)
f(n((0/_{0\0/_{0\1}2}2)/_{0\1}2)1)=f_ψ(Ω_ψ_I(1)2)(n)
f(n((0/_{0\0/_{0\2}2}2)/_{0\1}2)1)=f_ψ(Ω_Ω_ψ_I(1)+1)(n)
f(n(0/_{0\1}3)1)=f_ψ(ψ_I(2))(n)=f_ψ(I3)(n)
f(n(0/_{0\1}(0/_{0\1}1))1)=f_ψ(ψ_I(ψ_I(0)))(n)=f_ψ(Iψ_I(I))(n)
f(n(0/_{0\1}(0/_{0\1}2))1)=f_ψ(ψ_I(ψ_I(1)))(n)=f_ψ(Iψ_I(I2))(n)
f(n(0/_{0\1}0/_{0\1}1)1)=f_ψ(I)(n)=f_ψ(I^2)(n)










