t =d√Y/dx = dY/dx * 1/(2√Y) = (ax+b/2) /√Y
a-t^2 = a - (a^2x^2+abx+b^2/4) / Y = (4ac-b^2)/ (4Y)
dt = [d(1/ 2√Y)/dx* dY/dx + a /√Y ]*dx = [-1/4*Y^(-3/2) *(2ax+b)^2 +a*Y^(-1/2)]*dx
= -1/4* Y^(-3/2)*[(2ax+b)^2-4aY] dx = 1/4 * (4ac-b^2)*Y^(-3/2) dx
(a-t^2)^(m-1) dt= [(4ac-b^2)/4]^m / Y^(m+1/2) dx
则∫dx / Y^[(2m+1)/2] = [4/(4ac-b^2)]^m ∫(a-t^2)^(m-1) dt
a-t^2 = a - (a^2x^2+abx+b^2/4) / Y = (4ac-b^2)/ (4Y)
dt = [d(1/ 2√Y)/dx* dY/dx + a /√Y ]*dx = [-1/4*Y^(-3/2) *(2ax+b)^2 +a*Y^(-1/2)]*dx
= -1/4* Y^(-3/2)*[(2ax+b)^2-4aY] dx = 1/4 * (4ac-b^2)*Y^(-3/2) dx
(a-t^2)^(m-1) dt= [(4ac-b^2)/4]^m / Y^(m+1/2) dx
则∫dx / Y^[(2m+1)/2] = [4/(4ac-b^2)]^m ∫(a-t^2)^(m-1) dt










