令g(x)=lnx-2/e*(x)^0.5 g(x)'=1/x-1/(e*(x)^0.5)
当x=e^2时有极小值 g(x)>=g(e^2)=0 则lnx<=2/e*(x)^0.5
又e^x=1+x+x^2+……>1+x+x^2
e^x/x>1/x+x+1=3/4(1+x+1/x)+1/4*(x+1/x+1)
>=3/4*(1+2*(x*1/x)^0.5)+1/4*(((x)^0.5-1/2)^2+2*(x)^0.5+1/x)
>9/4+(x)^0.5/2>e/2+(x)^0.5/2
原式=e^x/x-e/4*lnx-e/2>e/2+(x)^0.5/2-e/4*(2/e*(x)^0.5)-e/2
=(x)^0.5/2-(x)^0.5/2=0