爱邦电线吧 关注:1贴子:35
  • 0回复贴,共1

电线电缆绝缘EB辐射加工中静电现象

只看楼主收藏回复

电线电缆绝缘EB辐射加工中静电现象
电线电缆绝缘EB辐射加工中,特别是绝缘体,静电现象是十分重要的。EB辐照提供过剩的电子并沉积在绝缘材料中。图2-8给出典型的EB辐照深度——剂量分布曲线和深度——电荷分布曲线,两条曲线关系不同,过剩电子峰值被推移到电子射程的末尾。被辐照的表面消耗负电荷,而且对地成为正电位。在绝缘材料的辐射加工中,所用辐照剂量越低,静电效应越轻,反之,静电效应越明显。这里最大电荷沉积迟后于辐射加工所用的有效厚度范围。
累积的过剩电子对地提供一个负电位,在绝缘材料中电子的累积电场强度可达109V/m 数量级、电荷达0.1C/m2。这些电子来源于加速器的电子,吸收体的电位是相对于任何一个接地导体。如果吸收材料的电导度是低的,而且样品的厚度超过电子的沉积范围,电荷可以残存一个很长时间,数天或更长。样品表面到超过电子射程大块样品的电子沉积层(面)
与金属接地,在经迹上电子容易放电,形成三维树枝状图像,称作“李其顿波格图”或电树。绝缘材料的电导度制约的电树生成,在聚烯烃、聚丙烯酸酯、聚苯乙烯可以看到“电树”现象,但在PVC、PTFE、PAS是看不到的。电荷在非导电塑料中沉积,厚度大于电子束的射程时,导致空间电荷的形成。如果不发生强烈放电或慢慢泄露,电荷的积累将影响电子束在材料中的射程变小,阻碍电子向深处进入,即绝缘材料中的电场阻碍电子的注入。
EB辐射加工聚合物绝缘的静电现象是一个普通行为。即使电子束的能量辐照并穿透最适宜厚度(EB在绝缘的进入面和穿透面辐照剂量相等之间的厚度),电荷沉积没有明显的副作用。但由图2-8可见,大多数EB电子通用过辐照物体时,总是留下少量的电荷,累积电荷随辐照剂量增大而增强,或采用双面辐照提高辐射加工产额,或辐照厚的绝缘,或厚度超过EB射程。在这种情况下,电荷的累积停留在材料中,情况将戏剧性改变,随时会发生意外放电。用能量不够的电子束加工厚的聚乙烯,由于累积电子放电可能导致绝缘缺陷的形成,大批产品可能为此而不合格。在电缆辐射加工中对这一点是要特别预防,特别是有添加剂配方材料,控制俘陷电荷的释放。
静电现象及电荷的累积除导致产品电气性能不合格外,静电放电产生火花,也会引起着火的危险。应在放电之前除掉电荷。
4.电缆EB辐射加工中的发泡和放电破坏现象。
高压力缆绝缘EB辐射加工,由于厚的聚乙烯绝缘发泡和放电破坏而导致产品不合格,是非常重要的质量问题。
如6/6KV电缆,绝缘厚度为4mm,用1.5MevEB辐照,其温升可达95℃,辐照剂量达20Mrad(200KGY)就出现发泡现象,但电缆绝缘经249 kGY,才能满足耐热性要求(一般凝胶含量大于75%),这是辐射产生热效应与交联结构生成的一个矛盾结果。虽然添加敏化剂或多官能团单体(如2份TAIC)可提高交联效率,减少交联所需的剂量到100-120KGY,但在低于交联剂量55kGY放电破坏又发生。就是说在达到所需交联度之前就发生了放电破坏,造成产品介电性能不合格。电力电缆辐射加工中,不论发泡还是放电破坏以及俘陷电荷的产生、积累,均是中压力缆成败的关键。有两个系列问题:其一,辐照中热量累积(温升)和小分子产物释放而发泡;其二,超量的电荷累积导致放电破坏。
(1)发泡问题
图2-11给出辐照中与辐照后连续测定的电缆温度曲线。在4mm厚PE绝缘中心温度比聚乙烯和导体界面温度增高速度大,分别为5.5℃/10KGY和3.0℃/10KGY。辐照后温度降低,也说明绝缘可为铜芯所冷却。
超过一定剂量,温升达到聚合物软化点,氢气等小分子产物释放,导致绝缘发泡。在室温(30℃)辐照发泡的临界剂量和温度分别为200KGY和95℃。若减少剂量在200KGY以下发泡问题是可以防止的。
通常添加多官能团单体可降低所需辐照剂量。添加不同官能团单体的凝胶——剂量曲线示于图2-12。获得凝胶量大于75%相应辐照剂量由纯PE的240KGY降低到150KGY以下。
(2)放电破坏
当PE绝缘厚度超过EB的最大穿透射程,辐照剂量达300KGY或更高时,在绝缘中可以观察到放电破坏现象。这个现象是因为过剩电荷的累积和所谓的lichtenberg图特性。
敏化剂单体对绝缘材料的交联结构生成与放电破坏剂量的影响列于表2-3。表中的结果显示,任何一个交联剂单体虽然可降低体系的需要的剂量(D),同时也会降低体系的放电破坏剂量Db。
表2-3
交联单体2% 放电破坏剂量 交联所需要的剂量D(KGY)
无 300 240
二烯丙基马来酸酯 22 120
三烯丙基三聚氰胶酯 55 100
二甲基丙烯酸乙烯酯 3 140
二炔基马来酸酯 30 100
二炔基 240 15
辐照聚乙烯、树技放电图(tree)在接近于电子穿透的最大深度处。而在交联剂存在下,一般在辐照表面附近观察到。因此,交联剂对辐射诱导放电破坏原因与电荷累积的增强或是由于单体分子中共轭双键的存在影响电荷的局部分布有关。这符合二块基化合物对PE辐射放电影响小的事实,因为它的分子没有共轭双键。
实践表明,辐照加工电缆绝缘的放电破坏与所选用多官能团单体有关,交流破坏电压与冲击破坏电压是与辐照剂量相关,随辐照吸收剂量的增加而减少,如表2-4所示,C样品低的破坏电压就是剂量大的贡献。
表2-4 辐射交联聚合物绝缘电缆
电线编号 A B C
凝胶含量为75%,辐照剂量(KGY) 150 100 270
体积电阻率ρV(ΩNaN) 5×1017 —— 1.8×1017
介电常数ε 2.47 —— 2.32
放电破坏 无 发生 无
交流破坏电压(KV) 90 20 60
冲击破坏电压(KV) 340 87 287
绝缘组成 LDPE+DPS* LDPE+DPM** LDPE
*DPS: 二炔基琥珀酸酯(Dipropargyl succinate)
**DPM:二炔基马来酸酯(Dipropargyl maleate)
本节讨论了:电缆EB辐射加工中的辐射氧化、热效应与静电效应等和放电破坏等现象。它们是电缆辐射交联成败的关键因素。最终产品的结构性能将取决于:
1.配方设计与辐射效应
(1)交联所需辐照剂量是辐射热效应、静电效应的关键因素。辐射产生的温升与辐解小分子产物会导致绝缘结构的损伤破坏。电荷沉积与静电效应会导致放电破坏,介电性能下降。
(2)强化交联与体系的交联剂量、放电破坏剂量。由(1)结果表明所需辐照剂量越高,后果越严重。添加不饱和多官能团单体会增加交联反应速度,降低辐射交联剂量,减轻辐射热效应及电子沉积效应。但添加的单体结构选择不当,在辐射交联结构尚未完成时,就会发生放电破坏。相应地起始放电破坏的剂量称之为放电破坏剂量,当体系的放电剂量小于辐射交联所需的剂量时,则该材料不能应用。
2.EB辐照加工工艺
(1)加速器的电子能量与绝缘材料结构。绝缘的厚度必须小于电子束的有效射程,以减少电荷在材料中的沉积。
(2)控制束流或传输速度,改善束下传输系统与环境热交换,减缓辐射热效应的累积。
为了预防EB辐射中的不良后果,必须从聚合物配方与辐照效应、辐照加工工艺条件、环境与后处理等,协调完成。
辐射技术咨询:13921274193


IP属地:江苏1楼2023-03-26 20:38回复