1. 聚合物材料的辐射氧化。
氧的存在会导致聚合物氧化裂解。聚合物绝缘的辐射氧化,主要来自于聚合物中溶解氧、辐射期间或辐照后扩散进入聚合物中的氧。氧化可在辐照加工中发生或在辐照加工后发生。
溶解氧主要存在于聚合物的非晶区或结晶-非结晶区界面,它与辐照产生的大分子自由基反应,生成过氧自基(ROO),过氧化氢(ROOH)和过氧化物(ROOR)。
过氧化物和过氧化氢热分解产生氧化产物和自由基。如聚乙烯辐射氧化分解产物包括羟基化物、H2O、CO2、过氧化物、醇和羰基化物。
辐射氧化速率与聚合物中和环境氧浓度(溶解氧以及氧扩散进入速度)有关。这些过程受不同因素的影响,包括:聚合物的集聚态(或相)结构、非晶区的微观结构和样品的厚度、氧的压力、辐照温度及辐射剂量率等。氧不能穿过聚乙烯的结晶区,氧的消耗和氧化物产额随结晶度增加而减少,氧化多在非晶区发生。
由于非晶区链段的活动性高于结晶区,大分子自由基更为活跃,若添加敏化剂促进双基重合或交联,与氧化过程相竞争自由基,可能导致氧化的减少。
辐射氧化的速率是随聚合物材料的厚度减小而增大。这是由于氧扩散进入薄的样品比厚的阻力小,更容易。
在高剂量率下辐照,自由基重合反应占优势,氧的扩散反应还来不及发生,在相当高的剂量率,特别是EB辐照加工时,氧扩散不能作为一个因素。
辐射后氧化与在聚合物辐照产生的俘陷自由基相关。研究证明,对于一个结晶(半结晶)聚合物来说,自由基主要存在于结晶与非结晶的界面区,因为该区和非晶区分子排列一样松散,但又受晶区的抑制,自由基重合不易发生。而氧扩散进入与俘陷自由基反应导致后氧化裂解。在较高温度下贮存,由于分子活动性增加后氧化将发生更快。
辐射氧化不仅导致大分子裂解,致使绝缘材料机械性能变坏,而且导致其电学性能,特别是介电损耗正切增大。这是聚射加工产品所不希望的。为了解决这一问题,实际上采取一些措施:添加抗氧剂、以减少和阻止氧化发生;添加敏化剂,促进交联,降低俘陷自由基浓度,减少辐射剂量,并与氧化过程、竞争自由基;高剂量率辐射加工,EB要比γ辐射大十数倍,阻止氧扩散;链性环境辐照和贮存;辐照后高温(高于聚乙烯α转变)处理,促进俘陷自由基重合反应,免后患。
辐射技术咨询:13921274193
氧的存在会导致聚合物氧化裂解。聚合物绝缘的辐射氧化,主要来自于聚合物中溶解氧、辐射期间或辐照后扩散进入聚合物中的氧。氧化可在辐照加工中发生或在辐照加工后发生。
溶解氧主要存在于聚合物的非晶区或结晶-非结晶区界面,它与辐照产生的大分子自由基反应,生成过氧自基(ROO),过氧化氢(ROOH)和过氧化物(ROOR)。
过氧化物和过氧化氢热分解产生氧化产物和自由基。如聚乙烯辐射氧化分解产物包括羟基化物、H2O、CO2、过氧化物、醇和羰基化物。
辐射氧化速率与聚合物中和环境氧浓度(溶解氧以及氧扩散进入速度)有关。这些过程受不同因素的影响,包括:聚合物的集聚态(或相)结构、非晶区的微观结构和样品的厚度、氧的压力、辐照温度及辐射剂量率等。氧不能穿过聚乙烯的结晶区,氧的消耗和氧化物产额随结晶度增加而减少,氧化多在非晶区发生。
由于非晶区链段的活动性高于结晶区,大分子自由基更为活跃,若添加敏化剂促进双基重合或交联,与氧化过程相竞争自由基,可能导致氧化的减少。
辐射氧化的速率是随聚合物材料的厚度减小而增大。这是由于氧扩散进入薄的样品比厚的阻力小,更容易。
在高剂量率下辐照,自由基重合反应占优势,氧的扩散反应还来不及发生,在相当高的剂量率,特别是EB辐照加工时,氧扩散不能作为一个因素。
辐射后氧化与在聚合物辐照产生的俘陷自由基相关。研究证明,对于一个结晶(半结晶)聚合物来说,自由基主要存在于结晶与非结晶的界面区,因为该区和非晶区分子排列一样松散,但又受晶区的抑制,自由基重合不易发生。而氧扩散进入与俘陷自由基反应导致后氧化裂解。在较高温度下贮存,由于分子活动性增加后氧化将发生更快。
辐射氧化不仅导致大分子裂解,致使绝缘材料机械性能变坏,而且导致其电学性能,特别是介电损耗正切增大。这是聚射加工产品所不希望的。为了解决这一问题,实际上采取一些措施:添加抗氧剂、以减少和阻止氧化发生;添加敏化剂,促进交联,降低俘陷自由基浓度,减少辐射剂量,并与氧化过程、竞争自由基;高剂量率辐射加工,EB要比γ辐射大十数倍,阻止氧扩散;链性环境辐照和贮存;辐照后高温(高于聚乙烯α转变)处理,促进俘陷自由基重合反应,免后患。
辐射技术咨询:13921274193









