分母
ln(1+x) = x -(1/2)x^2 +o(x^2)
xln(1+x) = x^2 -(1/2)x^3 +o(x^3)
xln(1+x) -x^2 = -(1/2)x^3 +o(x^3)
lim(x->0) [√(1+tanx)-√(1+sinx)]/[xln(1+x) -x^2]
=lim(x->0) [√(1+tanx)-√(1+sinx)]/[(-1/2)x^3]
=-2lim(x->0) [√(1+tanx)-√(1+sinx)]/x^3
分子分母同时乘以 [√(1+tanx)+√(1+sinx)]
=-2lim(x->0) [(1+tanx)-(1+sinx)]/{ x^3.[√(1+tanx)+√(1+sinx)] }
=-2lim(x->0) (tanx-sinx)/{ x^3.[√(1+tanx)+√(1+sinx)] }
=-lim(x->0) (tanx-sinx)/x^3
=-lim(x->0) (1/2)x^3/x^3
=-1/2