[(x+1)*In(x+1)](n)(n阶导数) (莱布尼兹公式)
=C(n,0)(组合数)(x+1)(-1)^(n-1)(n-1)!/(x+1)^n
+C(n,1)(-1)^(n-2)(n-2)!/(x+1)^(n-1)
=(-1)^(n-1)(n-1)!/(x+1)^(n-1)+n(-1)^(n-2)(n-2)!/(x+1)^(n-1)
=(-1)^(n-1)(n-2)!(-1)/(x+1)^(n-1)
=(-1)^n(n-2)!/(x+1)^(n-1) n≥2
又[(x+1)*In(x+1)]'=In(x+1)+1
∴(x+1)*In(x+1)=x+[∑(-1)^i*x^i/i(i-1)] i≥2
或由(x+1)*In(x+1)=(x+1)[∑(-1)^(i-1)*x^i/i] i≥1
=x+[∑(-1)^(i-1)*x^i/i+(-1)^(i-2)*x^i/(i-1)]
=x+[∑(-1)^i*x^i/i(i-1)] i≥2
