签到排名:今日本吧第个签到,
本吧因你更精彩,明天继续来努力!
连续签到:天 累计签到:天
0超级会员单次开通12个月以上,赠送连续签到卡3张
回复:自然数列本身就存在>=1种的哥猜成立与不立的现象存在。这是自然
只看楼主收藏回复 【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998897-998861}\2=18。共18个2n
【14】.998890=29+998861
【15】998892=31+998861
【16】998894=37+998857
【12】998886=29+998857
【13】998888=31+998857
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998897-998861}\2=18。共18个2n
【14】.998890=29+998861
【15】998892=31+998861
【16】998894=37+998857
【17】998896=53+998843
【18】998898=37+998861
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998909-998897}\2=6。共6个2n
【1】.998900=3+998897
【2】998902=5+998897
【16】998894=37+998857
【17】998896=53+998843
【18】998898=37+998861
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998909-998897}\2=6。共6个2n
【1】.998900=3+998897
【2】998902=5+998897
【3】998904=7+998897
【4】998906=67+998839
【18】998898=37+998861
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998909-998897}\2=6。共6个2n
【6】.998910=13+998897
【2】998902=5+998897
【3】998904=7+998897
【4】998906=67+998839
【5】998908=11+998897
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998917-998909}\2=4。共4个2n
【6】.998910=13+998897
【1】998912=3+998909
【2】998914=5+998909
【4】998906=67+998839
【5】998908=11+998897
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998917-998909}\2=4。共4个2n
【6】.998910=13+998897
【1】998912=3+998909
【2】998914=5+998909
【3】998916=7+998909
【4】998918=61+998857
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998927-998917}\2=5。共5个2n
【1】.998920=3+998917
【2】998922=5+998917
【2】998914=5+998909
【3】998916=7+998909
【4】998918=61+998857
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998927-998917}\2=5。共5个2n
【1】.998920=3+998917
【2】998922=5+998917
【2】998914=5+998909
【3】998916=7+998909
【4】998918=61+998857
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998927-998917}\2=5。共5个2n
【1】.998920=3+998917
【2】998922=5+998917
【3】998924=7+998917
【4】998926=17+998909
【4】998918=61+998857
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n
【1】.998930=3+998927
【2】998922=5+998917
【3】998924=7+998917
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n
【1】.998930=3+998927
【2】998932=5+998927
【3】998934=7+998927
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】.998930=3+998927
【2】998922=5+998917
【3】998924=7+998917
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n
【1】.998930=3+998927
【2】998932=5+998927
【3】998934=7+998927
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n
【1】.998930=3+998927
【2】998932=5+998927
【3】998934=7+998927
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=
【1】证哥猜需创新的无穷数理。 【2】证哥猜需统一的通用公式。 【3】证哥猜需要按序渐进法的无穷台阶。其在无穷数理中。 【4】证哥猜,2n=2p或P1+P2一组就行。而且边缘对应法是直径。 【5】证哥猜·无穷数理一定是P客观存在的规律。验哥猜的准确率就是要100%. 【6】抽数论证必须要符合条件。 ………… 以下我已经这样做了。
(七)公式: Px +A= Rn
进入下-p相邻{998941-998927}\2=7。共7个2n
【1】.998930=3+998927
【2】998932=5+998927
【3】998934=7+998927
【4】998926=17+998909
【5】998928=11+998917
无论是小数、中数、大数、还是无穷数,在证明≥6的2N中所用无穷数理不变,所用统一公式不变,所得≥6的2N=2p或P1+P2表示法不变。
计算方法:由相邻奇P之差决定。2n≤6直加3、5、7...。直加与双筛双选法,分别选用。
统一的验证方法,能使≥6的2n=2p或用P1+P2来表示。就是奔向天路的通行证。(无人能列举一反例)验证不完正常,数理通必须。。
带着个人证帖的观点,入他人证帖立场,叫门外汉。据理、据实指出【?】中的实、理之误才算真。高谈阔论叫理不入室。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。
......自然奇数列正确,1+1成立。
离开了证明题的目的与要求,还能谈证明??每1个>=6的偶数有多少组dn,就有多少组奇素 数之和=2n,就有多少个1+1的证明。 这是老祖先戏弄后人的妙计。。
>=6的2n\4是2n的,就有2n组不同奇数之和=2n。有余数的就有一组相同奇数=

