做到一道题,从地上以恒力F拉起一条绳子,最终拉起时速度为v。
设总长为L,均匀绳重m,求某一刻绳上升x高度时的速度v(x)
解答是这样的,先证明两个引理。第一个是把绳子在光滑桌面上匀速拉动,证明所需力为线密度λv^2。
第二个是把绳子在桌上匀加速a拉动,证明力为3λxa
然后回归题目,说绳子拉起部分受力为F-λxg,等效为有初速的匀减速运动,于是答案一下子就出来了。
但我想不通的一点在于,如果他说,光有-λv^2,是匀速,我没意见。但是再加上一个恒力部分,即F,势必影响整个运动,于是v不可能跟原来一样,于是-λv^2也会发生变化,那么匀速等效所说的匀速在一直在变化,如何还能等效?
小生一点疑问,才疏学浅无法想通,望赐教
设总长为L,均匀绳重m,求某一刻绳上升x高度时的速度v(x)
解答是这样的,先证明两个引理。第一个是把绳子在光滑桌面上匀速拉动,证明所需力为线密度λv^2。
第二个是把绳子在桌上匀加速a拉动,证明力为3λxa
然后回归题目,说绳子拉起部分受力为F-λxg,等效为有初速的匀减速运动,于是答案一下子就出来了。
但我想不通的一点在于,如果他说,光有-λv^2,是匀速,我没意见。但是再加上一个恒力部分,即F,势必影响整个运动,于是v不可能跟原来一样,于是-λv^2也会发生变化,那么匀速等效所说的匀速在一直在变化,如何还能等效?
小生一点疑问,才疏学浅无法想通,望赐教
