∵[(a+1)+(b+1)+(c+1)][1/(a+1)+1/(b+1)+1/(c+1)]≥[(a+1)/(a+1)+(b+1)/(b+1)+(c+1)/(c+1)]^2
∴1/(a+1)+1/(b+1)+1/(c+1)≥9/4,成立条件:a=b=c=1/3。
∵5/2-[1/(a+1)+1/(b+1)+1/(c+1)]=[ac(5b+3)+3b(1-b)]/[2(a+1)(b+1)(c+1)]≥0
∴1/(a+1)+1/(b+1)+1/(c+1)≤5/2,成立条件:a=1,b=c=0;或b=1,a=c=0;或c=1,a=b=0