夸克哲人吧 关注:19贴子:357
  • 10回复贴,共1

有这么个概率问题

只看楼主收藏回复

设某天使给甲乙两人AB两个装有钱的信封,然后告知其中一个信封里面的钱是另一个的两倍,并问其要不要和对方交换信封.甲乙都这样想,假设自己信封里钱为X,交换后的期望为50%×0.5X+50%×2X=1.25X.试问,天底下怎么会有双赢的赌博 

这个问题作为一个逻辑问题,我觉得真是很伤脑筋,反正我想了半天也没想太明白,不过想着想着,还是扯到哲学问题上去了...

首先我原来看的帖里一些回复,说什么期望是期望,实际上交换时基数不同等,还是有点道理的。那是站在双方的角度,宏观的视角看问题。我在用其中一个人的立场看时,还是觉得挺困扰的,问题如下:
有两种逻辑 
1.两个信封随便选一个,多的和少的可能各一半,换不换都一样,这显然是正确的。 
2.已知我的钱是x,那一种情况是我x他0.5x,交换亏0.5x,概率50%;另一种情况我x他2x,交换赚x,概率50%。则交换的盈利期望为x*0.5-0.5x*0.5=0.25x,所以换比较赚。 
以上2逻辑相悖。 

问题是,交换时看上去总是赚的,换过之后也是一样,难道我再换回来?实际上我不换第二次,因为我知道我换给对方多少钱。所以用对方的钱算一下,我的钱期望为1.25X,交换是亏的。于是我得到下面结论:
3种情况 
1.不知道信封里钱数,换不换一样 
2.知道自己的钱,换了有盈利期望0.25x 
3.知道对方的钱,换了有亏损期望0.25x 

那么就是说,拆开看哪个信封,就会导致那个信封相对贬值,设某信封为X的动作也是。尽管很难接受,逻辑上我也只能考虑到这里了。

于是问题回来了,对两个人来说,如果都拆开自己的信封看过,那就都有理由与对方交换。尽管就天使看来,最终两人肯定白换一场,但就个人考虑还是都要换的。我做了个改动,天使在问双方交换意愿时,加进条件:要交自己金钱1%作为手续费,此时还要交换吗?
这时问题就有意思了,按个人主义价值观,以1%损失搏25%收益显然是值得的,要换;而按集体主义价值观,两人交换的结果必定是亏的,不要换。我觉得这个很好地反映了集体主义对个人主义的优越性。


1楼2008-08-12 09:46回复
    概率论是大学还是高中学的我也不清楚,不过数学期望不都是这样算吗?不相容的多种情况相乘后加和,X应该是各种情况吧。

    我这个号很少上了,忙过这阵等半年估计好些


    3楼2008-08-30 11:02
    回复
      2025-12-24 22:24:54
      广告
      不感兴趣
      开通SVIP免广告
      汗...你那个明明是1.5A

      X作为随机变量应该是可以变的,不过无所谓,考虑方式不同而已,问题讨厌就在于不同算法得到不同结论,还不好说它不对。

      不去管什么数学期望了,分别考虑以下几个问题:
      1.我有+100钱和-50钱两个信封,你要不要挑一个?
      2.你有100钱,我是200钱或50钱,你要不要跟我换?
      3.你信封里有一定数量钱,我信封里钱是你一半或2倍,你跟我换不?
      4.有两个装钱的信封,一个是另一个2倍,你一个我一个,你要不要跟我换?

      如果你说不,从第几个开始说?


      5楼2008-09-10 19:06
      回复
        50%(A-A+2A)+50%(2A-2A+A)=1.5A

        X是他自己的钱,50%为A,50%为2A,把A看成常数,说明你一直使用天使视角,当你用实验者甲视角看时,看过自己信封后X才是常数(如100),那么A就不能是常数,计算期望时必须得到??X的结果而不是??A。这时算是问题2。而如果他不知道自己信封里的钱时似乎就不存在这个问题,大约相当于问题4。我阐述为1楼3种情况的前两种。原题肯定是有问题的,我是那么个表达方式,我认为设信封里的钱为X就会把X当成常数考虑了。

        问题2、4本来也不是同一问题,但是思考方式是密切相关的。现在主要问题是一路顺下来,怎么解释3、4之间的差别问题


        7楼2008-09-17 13:33
        回复
          实验者视角他的钱设为X,他知道是两种情况,但他看来两种情况自己手里的钱是一样的,尤其是拆开看过的那种情况下。两种情况不是自己50对方100或者自己100对方50,而是自己100对方200或者自己100对方50,此时A不是常数,实际情况就是这样。
          而天使视角才去设A和2A,A是常数,这时出现0.5A才是不正确的,但不能用A的标准要求X。
          还是那句话,怎么解释3、4之间的差别问题。


          9楼2008-09-21 13:32
          回复
            ...从开始到现在,我还是困惑于3和4之类的问题,想不明白,不想了。我还是比较懒的啊...


            11楼2008-10-01 18:34
            回复