首先,工业4.0时代,所强调的不仅是基础自动化和传感器所带来的大量数据,更重要的是,应该将这些数据与具体的业务过程建立联系,进而与这些业务过程所要实现的管理目标建立联系,就是说,基于大数据的成本分析模型,其核心的评价指标就在于成本管理上为企业带来的新增效益。伴随4.0时代底层和终端数据的丰富,为成本模型的丰富和完善,带来了新的可能性。在大数据体系支撑下,未来的成本管理将迎来新的时代。
第二个工作节点是大数据的分类,基于业务目标的分类。没有分类不可能做数据采集,更不可能进行数据建模。
第三个工作节点,在工业大数据领域,数据采集的主数据源,是智能制造的终端设备,如机器人、RFID、二维码,也可能直接采集自MES系统,ERP系统,PDM系统,虚拟现实系统,3D仿真设计系统等。
第四个工作节点是数据处理,主要是ETL。我把统一数据管理平台(DMP)的建设也放在这个节点。数据采集和处理是传统数据必有的业务,但数据能不能打通,是大数据建模在这一节点的关键。在一个传统企业,数据打通其实是一项非常艰苦的工作。
第五个节点是大数据的核心节点,即大数据分析模型的创建和创建以后的修正、迭代和不断完善。这个节点就是大数据区别于数据的关键!传统的BI在这个节点做得非常漂亮,五颜六色的滚动驾驶舱,但如果这些驾驶舱都是甲方领导或甲方业务人员基于领导指示,或内部管控开发的,都是现有业务,常常是没有竞争力,不增值业务的摹写,那就不是大数据!它没有带来任何新增价值贡献,也没有对经营做事前预测或事前预警。
最后一个(第六个)节点,就是基于大数据模型应用所实现的价值增值(变现),而这个价值增值刚好是第一个节点目标的实现,那么这个大数据工作模型就实现了一个目标驱动,从目标提出到目标落地的完整闭环,这就是真正的大数据工作方法。
为什么,我把第五个节点“大数据分析模型 – 先验模型、算法、迭代”,改画为红色,就是想说,大数据的核心,大数据的灵魂,在这个节点,而不是数据采集,也不是数据处理。我想再一次强调,为什么要做数据建模,为什么要采集数据,采集什么数据,处理什么数据,这些都不是大数据的本质,而本质是基于企业给定的目标创建能实现这一目标的大数据分析模型(目标导向原则),而这个分析模型最终通过实证和不断完善,能让目标变现(目标实现原则)。
企业转型请找天翎,为你打造最完善的企业管理系统,让你的企业在工业4.0时代迅速腾飞!
第二个工作节点是大数据的分类,基于业务目标的分类。没有分类不可能做数据采集,更不可能进行数据建模。
第三个工作节点,在工业大数据领域,数据采集的主数据源,是智能制造的终端设备,如机器人、RFID、二维码,也可能直接采集自MES系统,ERP系统,PDM系统,虚拟现实系统,3D仿真设计系统等。
第四个工作节点是数据处理,主要是ETL。我把统一数据管理平台(DMP)的建设也放在这个节点。数据采集和处理是传统数据必有的业务,但数据能不能打通,是大数据建模在这一节点的关键。在一个传统企业,数据打通其实是一项非常艰苦的工作。
第五个节点是大数据的核心节点,即大数据分析模型的创建和创建以后的修正、迭代和不断完善。这个节点就是大数据区别于数据的关键!传统的BI在这个节点做得非常漂亮,五颜六色的滚动驾驶舱,但如果这些驾驶舱都是甲方领导或甲方业务人员基于领导指示,或内部管控开发的,都是现有业务,常常是没有竞争力,不增值业务的摹写,那就不是大数据!它没有带来任何新增价值贡献,也没有对经营做事前预测或事前预警。
最后一个(第六个)节点,就是基于大数据模型应用所实现的价值增值(变现),而这个价值增值刚好是第一个节点目标的实现,那么这个大数据工作模型就实现了一个目标驱动,从目标提出到目标落地的完整闭环,这就是真正的大数据工作方法。
为什么,我把第五个节点“大数据分析模型 – 先验模型、算法、迭代”,改画为红色,就是想说,大数据的核心,大数据的灵魂,在这个节点,而不是数据采集,也不是数据处理。我想再一次强调,为什么要做数据建模,为什么要采集数据,采集什么数据,处理什么数据,这些都不是大数据的本质,而本质是基于企业给定的目标创建能实现这一目标的大数据分析模型(目标导向原则),而这个分析模型最终通过实证和不断完善,能让目标变现(目标实现原则)。
企业转型请找天翎,为你打造最完善的企业管理系统,让你的企业在工业4.0时代迅速腾飞!


