混沌数学
..补全1下..
什么是混沌数学
要弄明白不可预言性如何可以与确定论相调和,可以来看看 一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一 个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的, 水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。 这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。
假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来, 通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时 间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打 开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会 成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断 的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多 分钟内听不出任何明显的模式出现。
1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生 组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时 候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录 水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发 现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻, 你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是 0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒 后落下(这些数只是为了便于说明问题)。事实上,如果你精确地知 道头3滴水的滴落时刻,你就可以预言系统的全部未来。
那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的 测量,对大约10位或12位小数来说是正确的。但拉普拉斯的陈述 只有在我们使测量达到无限精度(即无限多位小数,当然那是办不 到的)时才正确。在拉普拉斯时代,人们就已知道这一测量误差问 题,但一般认为,只要作出初始测量, 比如小数点后10位,所有相 继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串 在一起,得到一个长期有效的预言。例如,假设我知道精确到小数 点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9 位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。误差 在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所 以,向未来走10步,我对下一滴水的滴落时刻就一无所知了。(精 确的位数可能不同:它可能使每6滴水失去1位小数的精度,但只 要取60滴,同样的问题又会出现。)
这种误差放大是使拉普拉斯完全确定论破灭的逻辑缺陷。要 完善整个测量根本做不到。假如我们能测量滴落时刻到小数点后 100位,我们的预言到将来100滴(或用较为乐观的估计,600滴) 时将失败。这种现象叫“对初始条件的敏感性”,或更非正式地叫 “蝴蝶效应”(当东京的一只蝴蝶振翅时,可能导致一个月后佛罗里 达的一场飓风)。它与行为的高度不规则性密切相关。任何真正规 则的东西,据定义都是完全可预言的。但对初始条件的敏感性却使 行为不可预言—从而不规则。因此,呈现对初始条件敏感性的系 统被称为混沌系统。混沌行为满足确定性的定律,但它又如此不规 则,以至在未受过训练的眼睛看来显得杂乱无章。混沌不仅仅是复 杂的、无模式的行为,它要微妙得多。混沌是貌似复杂的、貌似无模 式的行为,它实际上具有简单的、确定性的解释。
混沌的发现是由许多人(多得在此无法一一列举)作出的。它 的出现,是由3个相互独立的进展汇合而成的。第一个是科学注重 点的变化,从简单模式(如重复的循环)趋向更复杂的模式。第二个 是计算机,它使得我们能够容易和迅速地找到动力学方程的近似 解。第三个是关于动力学的数学新观点— 几何观点而非数值观 点。第一个进展提供了动力,第二个进展提供了技术,第三个进展 则提供了认识。
..补全1下..
什么是混沌数学
要弄明白不可预言性如何可以与确定论相调和,可以来看看 一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一 个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的, 水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。 这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。
假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来, 通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时 间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打 开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会 成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断 的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多 分钟内听不出任何明显的模式出现。
1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生 组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时 候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录 水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发 现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻, 你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是 0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒 后落下(这些数只是为了便于说明问题)。事实上,如果你精确地知 道头3滴水的滴落时刻,你就可以预言系统的全部未来。
那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的 测量,对大约10位或12位小数来说是正确的。但拉普拉斯的陈述 只有在我们使测量达到无限精度(即无限多位小数,当然那是办不 到的)时才正确。在拉普拉斯时代,人们就已知道这一测量误差问 题,但一般认为,只要作出初始测量, 比如小数点后10位,所有相 继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串 在一起,得到一个长期有效的预言。例如,假设我知道精确到小数 点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9 位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。误差 在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所 以,向未来走10步,我对下一滴水的滴落时刻就一无所知了。(精 确的位数可能不同:它可能使每6滴水失去1位小数的精度,但只 要取60滴,同样的问题又会出现。)
这种误差放大是使拉普拉斯完全确定论破灭的逻辑缺陷。要 完善整个测量根本做不到。假如我们能测量滴落时刻到小数点后 100位,我们的预言到将来100滴(或用较为乐观的估计,600滴) 时将失败。这种现象叫“对初始条件的敏感性”,或更非正式地叫 “蝴蝶效应”(当东京的一只蝴蝶振翅时,可能导致一个月后佛罗里 达的一场飓风)。它与行为的高度不规则性密切相关。任何真正规 则的东西,据定义都是完全可预言的。但对初始条件的敏感性却使 行为不可预言—从而不规则。因此,呈现对初始条件敏感性的系 统被称为混沌系统。混沌行为满足确定性的定律,但它又如此不规 则,以至在未受过训练的眼睛看来显得杂乱无章。混沌不仅仅是复 杂的、无模式的行为,它要微妙得多。混沌是貌似复杂的、貌似无模 式的行为,它实际上具有简单的、确定性的解释。
混沌的发现是由许多人(多得在此无法一一列举)作出的。它 的出现,是由3个相互独立的进展汇合而成的。第一个是科学注重 点的变化,从简单模式(如重复的循环)趋向更复杂的模式。第二个 是计算机,它使得我们能够容易和迅速地找到动力学方程的近似 解。第三个是关于动力学的数学新观点— 几何观点而非数值观 点。第一个进展提供了动力,第二个进展提供了技术,第三个进展 则提供了认识。