a[1]=a
a[n+1]=S[n]+3^n
b[n]=S[n]-3^n
a[n+1]-2*3^n=2(a[n]-2*3^(n-1))
a[n]=2*3^(n-1)-2^n+2^(n-1)*a
S[n]=2*3^n-2^(n+1)+2^n*a
b[n]=3^n-2^(n+1)+2^n*a
################
3^(m+n-2)=9
m+n=4
(9m+n)/(mn)>=16/(m+n)=4<==>(9m+n)(m+n)-16mn=(3m-n)^2>=0
或
(9m+n)/(mn)=1/m+9/n>=(1+3)^2/(m+n)=4
或
(9m+n)/(mn)+4=(9m+n)/(mn)+m+n=(1/m+m)+(9/n+n)>=2+6=8
或
(9m+n)/(mn)=(m-1)^2/m+(n-3)^2/n+8-(m+n)>=4