在AM上取点E,使EA=NB,连接CE、CN
∵BN⊥AD
∴∠N=90°
在Rt△BDN中,∠CBN+∠BDN=90°
在Rt△ACD中,∠CAE+∠CDA=90°
又∵∠BDN=∠CDA
∴∠CAE=∠CBN
在△AEC和△BNC中
AC=BC,∠CAE=∠CBN,EA=NB
∴△AEC≌△BNC(SAS)
∴CE=CN
又∵CM‖BN,BN⊥AD
∴CM⊥EN
∴∠CME=∠CMN=90°
在Rt△CEM和Rt△CNM中
CE=CN,CM=CM
∴Rt△CEM≌Rt△CNM(HL)
∴ME=MN
又∵AM=ME+EA
∴AM=MN+NB