宇宙人种集散地吧 关注:107贴子:3,044
  • 9回复贴,共1

确定性系统中的混沌现象的研究(摘录)

只看楼主收藏回复

(三)确定性系统中的混沌现象的研究

1.古代“浑沌”思想和牛顿的决定论

  不论中国还是西方,“混沌”(chaos,又称“浑沌”)概念古已有之。面对浩瀚无垠的宇宙和繁纷多变的自然现象,古人只能凭借直觉对它进行模糊、整体的想象和猜测,逐步产生了混沌的概念。中国古代所说的“混沌”,一般是指天地合一、阴阳未分、氤氲渺蒙、万物相混的那种整体状态。它既含有错综复杂、混乱无序、模糊不清的意思,又有内在地蕴涵着同一和差异、规则和杂乱、通过演化从“元气未分”的状态产生出五光十色、多姿多彩的现实世界的丰富内涵。《老子》中所说“有物混成,先天地生”,其实就是混沌。汉代王充的《论衡·谈天篇》说:“元气未分,浑沌为一”;汉代《易纬·乾凿度》云:“混沌者,言万物相混成而未相离”;又云:“太易者,未见气也;太初者,气之始也;太始者,形之始也;太素者,质之始也;气、形、质具而未相离,谓之混沌”。这些论述都强调了混沌是宇宙初始物质未被分化的一种无序的元气统一体。战国时期的伟大诗人屈原在他的《天问》中精彩地描绘了这种混沌状态:

  曰遂古之初,谁传道之?上下未形,何由考之?冥昭瞢暗,谁能极之?冯翼惟象,何以识之?明明暗暗,惟时何功?阴阳三合,何本何化?……

  这也把宇宙的初始状态描绘为天地未形、浑浑沌沌、动荡不定、明暗不分、阴阳渗合的形象。

  但是,在古人看来,浑沌并不简单地等同于混乱和无序,它是万物混成尚未分离的状态,它是统一的整体,它本身就包含着差异和多样性,是秩序和无秩序、和谐与不和谐的统一体。浑沌先于宇宙,浑沌孕育着宇宙,浑沌产生出宇宙。按照《易纬·乾凿度》的说法,这个演化过程就是

  太易→太初→太始→太素→混沌→天地……

  “天地”才是现实的宇宙。

  在古埃及和巴比伦的传说里,都提出了世界起源于混沌的思想。古希腊称“原始混沌”为“卡俄斯”,说卡俄斯生于万物之先,它生下大地(“该亚”)、地狱(“塔尔塔洛斯”)和爱情(“厄洛斯”),大地又生出天(“乌利诺斯”)和海(“蓬托斯”)。这也是说世界万物都是从混沌中分离出来的。在《圣经》“创世纪”中说,起初神创造了天地,大地是空虚混沌,神灵运行于黑暗的深渊中,神说“要有光”,于是就有了光;神把光暗分开,于是就有了晨昏昼夜。这就是“创世”的第一天。这里借“神”的外衣所编织的动人神话,都反映了古人关于世界起源的共同思想:世界产生之前的自然状态是混沌,万物借分离之力从混沌中演化出来。但是,即使古人,也力图揭开浩阔苍茫的宇宙的奥秘,寻找变幻莫测的大自然背后的秩序,从混沌中发现规则性。世界各地的古文明中,都产生了计算季节的精奥历法,都出现了预测日月食的天文律条。

  伟大的文艺复兴运动和哥白尼日心说的提出,激发起人们探索大自然的勇气和信心,近代自然科学诞生了。1687年,伟大的牛顿(Newton, Isaac 1642~1727)出版了他的巨著《自然哲学的数学原理》,以机械运动的三个基本定律和万有引力定律为公理基础,确立了一个揭示“万物的至理”、结构“世界的体系”的严整的经典力学理论体系。这个理论简单而精确,普适而优美,对地面物体的各种复杂运动和太阳系内各个天体的长短周期运动做出了统一的解释,包括落体运动,弹道曲线,波的传播,光的折射,海洋潮汐,流体涡旋,行星轨道,月球岁差,彗星的行踪,双星的光变等等。牛顿的理论获得了意想不到的成功,世界一下子变得秩序井然。

  以牛顿力学为旗帜的科学革命,导致了把宇宙看作是一个巨大的精密机械,或者说就像一架精确运行的“钟表机构”。因为牛顿力学的核心是牛顿第二定律,它是一个二级微分方程;这个方程的解,即物体的运动轨道,完全由两个初始条件唯一地决定。就是说,只要知道了物体在某一时刻的运动状态以及作用于这个物体的外部的力,就可以准确地确定这个物体以往和未来的全部运动状态。


1楼2007-10-12 09:44回复
      庞加莱的工作提出了经典力学的确定性原则的适用限度的重大问题,留下了极富启发性的论断和猜想。不过,混沌问题是太复杂了,庞加莱的时代还不具备揭示和描述混沌现象的足够的知识储备和数学工具。虽然凭着他超人的几何直觉对混沌的复杂性有所洞察,但是他并不真的是“不想”画出他所发现的“同宿栅栏”,而是“无法”把它画出来。这是只有用电子计算机技术才能处理的复杂几何图象。庞加莱的思想是太超前于他的时代了,所以他的发现在半个多世纪里并未受到科学界的重视;牛顿力学确定性的帷幕,仍然厚厚地遮蔽着混沌广阔富饶的研究领域。

    3.伯克霍夫的工作与KAM定理

      美国数学家伯克霍夫(Birkh off,George 1884~1944)是20世纪初少数几个认识到庞加莱动力系统研究工作的重要性的人物之一,他继承和发展了庞加莱的工作。

      伯克霍夫把庞加莱截面方法用于探索哈密顿系统的一般行为。他发现微分方程的性质取决于正则级数的收敛性。如果正则级数是收敛的,则微分方程的解位于N维不变环面上。但实际上级数的收敛、发散与否取决于振幅的大小。当考虑非线性作用时,椭圆不动点周围的不变环面有些遭到破坏,有些继续存在但有点变形。

      1932年,伯克霍夫证明,对应于不变环面的消失,存在不稳定区域,它可以被一条扭曲映射下的不变曲线所包拢,而区域内并无环绕原点的不变曲线。他实际上已经证明,任意接近外边界的点,在映射作用下可以任意接近内边界,反之亦然。在研究不稳定区的结构时,伯克霍夫让一个收缩性的扭曲映射作用于两条不变曲线之间的不稳定区域,结果不稳定区域被映射到一个更小的子区域中;映射的迭代最终把原区域变成了一个面积为零、结构极其复杂的极限集合,位于原区域中的点的轨迹都收敛到这个集合中去了。

      伯克霍夫实际上已经发现了“混沌行为”和现在所说的“奇怪吸引子”的实例,他当时称之为“奇特曲线”。更值得提出的是,他已经意识到这种行为是动力系统的通有行为。除伯克霍夫等极少数人之外,几乎没有人沿着庞加莱的道路前进。直到20世纪60年代以后,对动力系统的研究才有了长足的进展。

      1960年前后,前苏联数学家柯尔莫果洛夫(Kolmogorov,A.N.)、阿诺德(Arnold,V.I.)和莫塞尔(Moser, J.)提出并证明了以他们的姓氏的字头命名的KAM定理。这个定理的基本思想是1954年柯尔莫果洛夫在阿姆斯特丹举行的国际数学会议上宣读的《在具有小改变量的哈密顿函数中条件周期运动的保持性》短文中提出的。后来他的学生阿诺德做出了严格的证明,莫塞尔又推广了这些结果。

      按照分析力学方法,N个自由度系统的哈密顿函数是H=H(p1,p2……pN;q1,q2……qN),系统的运动由哈密顿正则方程

     

      确定。如果能够找到一系列正则变换,从广义动量p1,p2……pN和广义坐标q1,q2……qN变到另一套作用-角度变量J1,J2……JN 和θ1,θ2……θN,使得利用新变量表示的哈密顿函数只依赖于前一半变量J1,J2……JN,而与θ1,θ2……θN无关,则这个力学系统就是完全可解的,即为一可积系统。因为这意味着这个系统的行为可化简,归约为N维环面上的条件周期运动。相反,如果找不到一种变换,使得哈密顿方程只包含作用变量,则系统是不可积的。实际上,对于多数保守系统,是无法找到这种正则变换的。

      KAM定理是关于近可积系统的一个重要的、一般性结论,有十分重要的意义。假定系统的哈密顿函数分为两部分



      其中H0部分是可积的,V是使H变得不可积的扰动,只要ε很小,这就是一个弱不可积系统。KAM定理断言,在扰动较小,V足够光滑,离开共振条件一定距离三个条件共同成立下,对于系统的大多数初始条件,弱不可积系统的运动图象与可积系统基本相同。可积系统的运动限制在由N个运动不变量决定的N 维环面上,而弱不可积系统的绝大多数轨道仍然限制在稍有变形的N维环面上,这些环面并不消失,只有轻微的变形,称为不变环面。不过,只要有非零的扰动,总会有一些轨道逃离不变环面,出现不稳定、随机性的特征;但只要满足KAM定理的条件,这些迷走轨线是零测度的,不代表系统的典型行为。


    4楼2007-10-12 09:45
    回复
      2025-08-03 04:40:07
      广告
      不感兴趣
      开通SVIP免广告
        大量的计算机数值实验表明,破坏KAM定理的任何一个条件,都会促使迷走轨线增多,使运动的不规则性和随机性增大,最终导致混沌运动。当然,这运动所遵循的仍然是决定性的牛顿力学方程式。所以,KAM定理以一个限制性原理的形式,从反面泄露了有关牛顿力学面目的真实信息。它暴露出,确定性的动力系统,只要精确地从同一点出发,其运动就是一条确定的轨道;但是只要初始条件有无论多么微小的变化,其后的运动就会变得无序和混乱,就如同掷骰子一样,是随机和不可预测的。这就是牛顿力学的内禀随机性。

      4.洛仑兹关于气象预报的研究

        混沌研究上的一个重大突破,是在天气预报问题的探索中取得的。

        1922年,英国物理学家和心理学家理查孙(Richardson,LewisFry 1881~1953)发表了一篇题为《用数值方法进行天气预报》的文章。在文章的末尾,他提出了一个异想天开的幻想:在一个大建筑内,集聚一大批长于计算的工作者,在统一指挥下相互协调地对影响天气变化的各种数据进行计算。他估计,为了使天气预报和实际的天气变化达到同步,大约需要64000个熟练的计算者。他设想,在遥远的将来,有朝一日或许有可能发展出比天气变化还要快的计算手段,从而使天气预报梦想成真。真是先知之见,不到30年,电子计算机就出现了,并且成功地用于天气预报。在牛顿力学确定论思想的影响下,当时科学家们对天气预报普遍持有这样乐观的看法:气象系统虽然复杂异常,但仍然是遵循牛顿定律的确定性过程。在有了电子计算机这种强有力的工具之后,只要充分利用遍布全球的气象站、气象船、探空气球和气象卫星,把观测的气象数据(气压、温度、湿度、风力等)都及时准确地收集起来,根据大气的运动方程进行计算,天气变化是可以做出精确预报的。既然天文学家能够根据牛顿定律,用铅笔和计算尺计算出了太阳系的未来,预见了哈雷彗星的出没以及海王星和冥王星的存在,勾划出了人造卫星和洲际导弹的准确轨迹,那么为什么对于风和云就做不到呢?只要有一台功能高超的计算机来充任拉普拉斯设想的“智者”,天气的变化就会在人们精确的预言中。计算机之父约翰·冯·诺意曼就认为气象模拟是计算机的理想的用武之地。他甚至认为,天气状况不仅可以预报,而且是可以人工控制和改变的。美国气象学家、麻省理工学院的洛仑兹(Lorenz,Edward)最初也接受了这种观点。1960年前后,他开始用计算机模拟天气变化。

        洛仑兹有良好的数学修养,他本想成为一个数学家,只是由于第二次世界大战的爆发,他成了空军气象预报员,使他成了一位气象学家。比起庞加莱来,洛仑兹的条件是太优越了。他拥有一台“皇家马可比”计算机,它是用真空管组成的,虽然运算速度还不算快,但在当时已经是很了不起的了。洛仑兹把气候问题简化又简化,提炼出影响气候变化的少而又少的一些主要因素;然后运用牛顿的运动定律,列出了12个方程。这些方程分别表示着温度与压力、压力与风速之间的关系等等。他相信,运动定律为数学确定性架起了桥梁,12个联立方程可以用数值计算方法对气象的变化做出模拟。开始时,洛仑兹让机器每分钟在打印机上打出一串数字,表示出一天的气象,包括气压的升降,风向的变化,气温的起伏等。洛仑兹把这些数据与他心目中的预测相对比,感觉到某种熟悉的东西一次一次地重复出现。气温上升又下降,风向向北又向南,气压升高又降低;如果一条曲线由高向低变化而中间没有隆起的部分,随后就会出现两个隆起部分。但是他又发现,这种重复决不是精确的,一次与一次绝不完全吻合。这个结果已经开始向洛仑兹透露着某种奥秘了。

        1961年冬季的一天,洛仑兹用他的计算机算出了一长段数据,并得出了一个天气变化的系列。为了对运算结果进行核对,又为了节省点时间,他把前一次计算的一半处得到的数据作为新的初始值输入计算机。然后他出去喝了杯咖啡。一个小时后当他又回到计算机旁的时候,一个意想不到的事情使他目瞪口呆了,新一轮计算数据与上一轮的数据相差如此之大,仅仅表示几个月的两组气候数据逐渐分道扬镳,最后竟变得毫无相近之处,简直就是两种类型的气候了。开始时洛仑兹曾经想到可能是他的计算机出了故障,但很快他就悟出了真相:机器没有毛病,问题出在他输入的数字中。他的计算机的存储器里存有6位小数, 0.506127。他为了在打印时省些地方只打出了3位0.506。洛仑兹原本认为舍弃这只有千分之一大小的后几位数无关紧要;但结果却表明,小小的误差却带来了巨大的“灾难”。


      5楼2007-10-12 09:45
      回复
          为了仔细看一下初始状态原本十分相同的气候流程,如何越来相差越大,洛仑兹把两次输出的变化曲线打印在两张透明片上,然后把它们重叠在一起(图5)。一下子就清楚地看出来,开始时的两个隆峰还很好地相重叠,但到第三个和第四个隆峰时,就完全乱套了。这个结果从传统观点看来是不可理解的。



          因为按照经典决定性原则,初始数据中的小小差异只能导致结果的微小变化;一阵微风不会造成大范围的气象变化。但是洛仑兹是从事天气预报的,他对长期天气预报的失败是有深切感受的。这个离奇古怪的计算结果与他的经验和直觉是完全相符的。所以他深信他的这些方程组和计算结果揭露了气象变化的真实性质。他终于做出断言:长期天气预报是根本不可能的!他甚至有些庆幸地说:“当然,我们实在也不曾做准过气象的长期预报,而现在好了,我们找到了开脱!” “对于普通人来说,看到我们可以在几个月前就很准地预报了潮汐,便会问:为什么对大气就不能准确预报呢?确实,大气虽然是一个与潮汐不同的系统,但支配它们的定律的复杂程度却是差不多的。但我认为,任何表现出非周期性态的物理系统,都是不可预测的。”①事实正是这样,即使在今天,世界上最好的天气预报也只能一天可靠,超过两三天,就只是猜测。

          洛仑兹是个穿着气象学家外衣的数学家,他很快看出了气候变化不能精确重演与长期天气预报的不可能二者之间存在着一种必然的联系。用数学语言来说,就是“非周期性”与“不可预见性”之间的联系。气象系统是不断重复但又从未真正重复的,这叫做“非周期系统”。如果气候的变化是严格的周期性的,即某一时刻各个地方的压力、温度、湿度、每一片云、每一股风都和此前某一时刻的情况完全一样,那么这一时刻以后的天气变化也将和此前那一时刻以后的天气变化完全相同,于是天气就会循环往复地永远按照这个变化顺序反复重现,精确的天气预报也就成了平淡无奇的事情了。

          基于这种认识,洛仑兹就把气候问题丢在一边,专心致力于在更简单的系统中去寻找产生复杂行为的模式。他抓住了影响气候变化的重要过程,即大气的对流。受热的气体或液体会上升,这种运动就是对流。烈日烘烤着大地,使地面附近的空气受热而上升;升到高空的空气放热变冷后,又会从侧面下降。雷雨云就是通过空气的对流形成的。如果对流是平稳的,气流就以恒定的方式渐渐上升;如果对流是不平稳的,大气的运动就复杂化了,出现某种非周期性态。这与天气变化有某种类似。于是,洛仑兹就从表征着流体运动过程的纳维-斯托克斯方程组出发,经过无量纲化处理并做傅立叶展开,取头一、二项,得到傅立叶系数满足的一组常微分方程。与大气的实际对流运动相比,这组方程是大为简化了,它只是抽象地刻划了大气真实运动的基本特点,既考虑了流动的速度,又考虑了热的传输,与真实的大气运动是大体类似的。他建立的三个方程是dx/dt=10(y-x)

          dy/dt=28x- y-xz

          dz/dt=(8/3)z+xy

          x、y、z是三个主要变量,t是时间,d/dt是对时间的变化率;常数28对应于不平稳对流刚开始后系统的状态。这就是1963年洛仑兹发表在《气象科学杂志》20卷第2期上的题为《确定性非周期流》中所列出的方程组。由于其中出现了xz、xy这些项,因而是非线性的,这意味着它们表示的关系不是简单的比例关系。一般地说,非线性方程组是不可解的,洛仑兹的方程组也是不能用解析方法求解的,唯一可靠的方法就是用数值方法计算解。用初始时刻x、 y、z的一组数值,计算出下一个时刻它们的数值,如此不断地进行下去,直到得出某一组“最后”的数值。这个方法叫做“迭代”,即反复做同样方法的计算。用计算机进行这种“迭代”运算是很容易的。洛仑兹把x、y、z作为坐标画出了一个坐标空间,描绘了系统行为的相轨道,他吃惊地发现,画出的图显示出奇妙而无穷的复杂性(图6)。这是三维空间里的双重绕图,就像是有两翼翅膀的一只蝴蝶;它意味着一种新的序,轨线被限制在某个边界之内,决不会越出这个边界;但轨线决不与自身相交,在两翼上转来转去地环绕着。这表示系统的性态永远不会重复,是非周期性的,从这一点来说,它又纯粹是无序的。


        6楼2007-10-12 09:45
        回复
          6.“周期倍化分叉”的发现

            在动力系统演化过程中的某些关节点上,系统的定态行为可能发生性质的改变,原来的稳定定态变为不稳定定态,同时出现新的更多的定态,这种现象叫作“分叉”(bifurcation)。分叉是由运动方程中参数的变化引起的,所以往往要用“参数空间”来描绘分叉现象。随着参数的变化,分叉可以一次接一次地相继出现,而这种分叉序列又往往是出现混沌的先兆,最终会导致混沌。

            生物群体数量(“虫口”)变化的研究以及涉及到的一类典型一维映射的分叉现象的研究,在20世纪70年代混沌学的创立和发展中曾经起到过特殊的作用。

            澳大利亚昆虫学家尼科尔森(Nicholson,A.J.)曾经在一个大瓶子里用有限的蛋白质食物喂养了一瓶子绿头苍蝇,研究受到空间和食物限制的苍蝇群体数目(“蝇口”)的变化。他观察到有时绿头苍蝇可繁殖到将近一万只;过些时候又会降至几百只。蝇口繁殖过快超过容器的空间限制后数目就急剧减少,而活动空间的扩大又使蝇口快速增长;蝇口决不会单调增大或单调减少,呈现一种周期性的涨落。尼科尔森发现,这个循环周期大约是38天。但每个周期内蝇口数却可能出现两个峰值,而且到约450天后,蝇口的变化(振荡)变得极不规则。在这个实验中,蝇口数的变化包括了周期性、拟周期性和混沌。

            看来,生物群体应被看做是一个动力系统,是受着某种动力驱使的。在食物受限制的地域单种生物在起起落落地繁殖着;几种生物共存的区域,各种生物在生存竞争中此长彼消;在捕食者与被食者之间,存在着双向抑制作用;在宿主群体内部,流行病在传播。……这一切因素,都对生物群体起到约束作用,把群体限制在更合理的数目上。

            生态学家们一直试图为生物群体增减寻找一个数学模型。一个合理的简化就是用离散的时间间隔去模拟虫口的变化。因为许多生物群体的数目基本上都是按照一年的时间间隔变化的,而不是连续时间的变化。更有一些昆虫,它们只在一年中的特定季节里繁殖,所以它们的一代一代之间决不会重叠。一年一年的变化,正是生态学家所要了解的全部信息。因此,描写生物群体的方程不是连续的微分方程,而是比较简单的差分方程,这是一种迭代模型,即逐年逐年地反复用同一个函数进行数值运算,它可以反映由一个状态(数目)到另一个状态(数目)的跳跃变化。

            这个差分方程应该反映出以下影响虫口增减的因素:第一,虫口的增长必定与前一年的虫口数目成正比,这是一个线性关系,比例系数k即群体的增长率;第二,虫口的增长又受到空间、食物、流行病等许多因素的限制,不可能无限增长。实际情况是,群体小时稳定增长,群体适中时增殖量近于零,群体暴涨时急剧下降。

            一个较好的方程是由迭代逻辑斯蒂映射所得到的非线性逻辑斯蒂(Logistic)差分方程

            xt+1=kxt(1-xt)

            x表示虫口的相对数,它被定义为介于0和1之间的数,0代表灭绝,1代表群体的最大虫口数;t表示时间,它只能以整数0,1,2,3……跳跃;生殖增长率k代表了这一模型的一个十分重要的特征,表示拉伸或压缩的程度,也即非线性程度。从几何学上讲,逻辑斯蒂映射表示以不均匀的方式拉伸或压缩一个线段,然后再加以折叠。对于一个生物群体来说,参数k越低,意味着群体最终将在较低的数量水平上灭绝;参数k的值提高以后,群体的数量也不会无限增长,这是可以理解的。但是计算表明,在k值提高后,群体却不可能收敛于一个定态水平,这是令人费解的。

            20世纪70年代,美国普林斯顿大学的生态学家罗伯特·梅(Robert May)开始利用计算机对这种单一群体生物随时间而变化的最简单的生态学方程进行系统的研究。他对这一非线性参数试用不同的值进行迭代计算。他发现,改变的不仅仅是输出的数量,而且也改变了输出的性质;因为它不仅影响着平衡时群体的数值,而且还影响群体是否能够实现平衡。


          9楼2007-10-12 09:46
          回复
            洛仑兹所给出的那个绕两叶回转的永不重复的轨线,就是一个奇怪吸引子——“洛仑兹吸引子”。它是在三维空间里的一类双螺旋线;系统的轨道在其中的一叶上由外向内绕到中心附近,然后突然跳到另一叶的外缘由外向内绕行;然后又突然跳回原来的那一叶上。但每一叶都不是一个单层的曲面,而是有多层结构。从中取出任意小的一个部分,从更精细的尺度上看,又是多层的曲面。所以这种螺旋线真是高深莫测、复杂异常。它永远被限制在有限的空间内,却又永不交结,永无止境。 1976年,德国的若斯勒考察了一个更为简化的洛仑兹方程

              dx/dt=-(y+z)

              dy/dt=x+ay

              dz/dt=b+xz-cz

              这个方程组的特点是只有最后一个方程中含有非线性项xz。若斯勒由这个方程组得出了一个洛仑兹吸引子的变种(图10)。





              它也是由很多层次构成的复杂几何图象。与洛仑兹吸引子不同,若斯勒吸引子只有一片。它似乎是这样形成的:当z较小时,系统的轨道在(x,y) 平面或平行于它的平面内向外旋;当x足够大时,z开始起作用,轨道在z轴方向拉长;当z变大后,dx/dt则变小,轨道又被拉回到x较小处。三个变量的交互作用,产生了轨线的复杂运动。

              除此之外,混沌学家们还得到了一些其它的奇怪吸引子。可以断言,充分认识奇怪吸引子的作用,对许多问题的探索,都会有巨大的作用。不过,奇怪吸引子的数学理论是困难的,目前还处于起始的阶段。正像茹勒所说:①“这些曲线的花样,这些点子的影斑,往往使人联想到五彩缤纷的烟火,或宽阔无垠的银河;也往往使人联想到奇怪的、令人烦躁不安的植物繁殖。一个崭新的领域展现在我们面前,其结构需要我们去探索,其协调(和谐)需要我们去发现。”

            8.生理混沌的探索

              70年代以来,在生物个体的生理现象中,也广泛地发现了混沌。

              生物体全身的每个器官,都有自己的节律。生命的存在,就是一个耦合振子,即各种内在节律振动的巧妙组合。一旦某种节律失调,就会使生命体患上某种疾病。

              心脏的搏动,是推动一切生命节律的中心环节。正常的心律是周期性的。人的心搏大约是每分钟50到100次,日复一日、年复一年地进行着;但是它有许多非周期的病,例如对生命危险极大的心室纤维性颤动。不同的心肌彼此不合节律地收缩,不协调地乱动一起,起不到正常泵血的作用,终致使病人死亡。病者心脏的各个部分似乎都是正常的,节律依然是规则的;但心脏的整体运动,却致命地扭曲了,陷入了稳态混沌。这是一种复杂系统疾病。心脏自己不会停止这种纤颤,只有用电击除颤器来消除。这种电震击是一个巨大的扰动,可以使心脏返回到定态。为什么心脏的节律在人的一生中经历几百亿次的搏动,其中经过多少次的紧张与松弛,加速与减速,从未失误,然而却会突然进入一种无法控制的、致命的疯狂节律——纤颤呢?研究表明,有一类重要的心律失常可能是所谓“模式锁定”引起的,即两种并行收缩心律的相互作用产生的。从物理学上讲,就是外来的迫动频率与物体振荡的固有频率以某种简单的数字比率达到同步,这称为“锁相”。加拿大数学生物学家列昂·格拉斯(Glass,Leon 1943~)和他的同事在1981年进行了一个有趣的实验。他们从鸡胚心脏中取出一团细胞,这团细胞能够自发跳动,相当于固有振荡器,每分钟跳动60次到120次。然后用一根极细的玻璃微电极插入细胞团,打入一个相当于迫振的周期性小电震。改变电脉冲的频率和振幅,结果不仅产生了各种“锁相”,而且产生了混沌。他们观察到了搏动方式一次又一次地出现了分叉,即“倍周期”现象。这个结果表明,模式锁定可以导致混沌,即使鸡胚心脏的细胞团混沌地搏动。

              科学家们的研究表明,一个参数的微小变化,可以把一个健康的心脏推进到一个双分枝点而进入混沌态。科学家们希望通过混沌动力学的研究,能够找到一种方法,在危急的纤颤发生之前,辨认出它的来临;并设计出最有效的除颤装置和治疗药物,使这些猜想盲试的方法变得比较科学。


            15楼2007-10-12 09:49
            回复
                类似的动力系统疾病现在也越来越多地被认识。这类疾病是由于系统的原有振荡停止或振荡方式改变引起的。例如喘息、婴儿窒息、精神分裂症、某种类型的抑郁症,还有由于白细胞、红细胞、血小板、淋巴细胞失衡而导致的某种白血病等。但是,生理学家已开始认识到,生理混沌可以导致疾病,它也可能是健康的保证。一个生命系统固然需要有抗干扰性,如心肌细胞和神经细胞能够很好地抵抗外界的干扰;但生物系统还需要有灵活性,即能够在一个很大的频率范围内适应外界的各种变化而正常工作。环境的变化常常是难以预料的,生物机体必须能够迅速地对各种变化做出反应。如果机体的某种功能锁定在一个严格固定的模式里不可改变,那就会丧失掉对外界变化的适应能力。例如把心脏搏动与呼吸节律都锁入一个严格的周期中,在机体松弛与紧张的不同状态,在空气稀稠不同的各种海拔高度上,都只有同一种节律,这个生物体就不可能存活下去。人体的其他许多节律也都如此,都必须有多种变化的可能。哈佛医学院的戈尔德伯格(Goldberger, Ary L.)断言,健康的动力学标志就是分形物理结构;治疗疾病时应着眼于拓宽一个系统的谱储备,即增加产生不同频率的能力。“广谱的分形过程是‘信息上极为丰富的’。与此相反,周期态只能反映狭窄谱带,它必然是单调的、重复的系列,信息内容贫乏。”①圣迭戈的精神病学家阿诺德·曼德尔 (Mandell,Arnold)甚至说:“可能是这样,数学上的生理卫生健康其实就是疾病,而数学上的病理才是健康,即混沌态才是健康。”②他认为,人体中最混沌的器官就是脑,说人达到了平衡,那就是死亡,生物学平衡即死亡。“如果你被我询问你的头脑是否在平衡态,你的脑是否一个平衡系统,那就是说,要求你在几分钟的时间里不要去胡思乱想,而你这时自己就会知道你的大脑并非平衡系统。”③科学家们也已开始用混沌来研究人工智能。例如利用系统动力学在多个吸引流域之间的来回变迁与沟通来模拟符号与记忆。人的精神思想包含着丰富的概念、决策、情绪和七情六欲,不能把精神和思想描绘成静态的数学模型,它具有一系列尺度的层次,神经元实现着各种微观尺度与宏观尺度的交融联系,这与流体力学中的湍流或其它复杂的动力系统十分相似。量子物理学家薛定谔 (1887~1961)在《生命是什么?》这部名著中提出:生命以负熵为食;一个活的生物体有惊人的本领去浓缩“有序性之流”于自身之中,从而使生命避免融入原子混沌的崩溃之路。这正是生命活动的最基本的奥秘,它吮吸有序性于无序的海洋之中!他指出,生命的基本物质是“非周期晶体”,它组成了生物体这个十分动人的、复杂的物质结构。所以,非周期性正是生命奇特性质近于神妙境地的根源!无论人们如何看待混沌,但无论如何也不能把混沌和非周期性从人体、生命、精神思想中排除出去了。

                通过混沌探索的历史回顾,我们可以断言,混沌学正在改变着整个科学建筑的结构,改变着整个科学世界图景。混沌学的发展,或者更广义地说,非线性科学的发展,拨正了科学探索的方向盘。未来科学的任务,不是使用经典确定论的手术刀剖析明白宇宙的钟表结构,而是按照确定性与随机性统一的观点,阐明客观世界这个超巨系统的复杂结构和运行方式,揭示它演化发展的机理与途径。J.格莱克(Gleick,James)在《混沌》一书中写道:“这门新科学的最热情的鼓吹者们竟然宣称:20世纪的科学只有三件事将被永志不忘,那就是相对论、量子力学和混沌。他们认为混沌是20世纪物理学的第三场大革命。与前两场革命相似,混沌与相对论及量子力学一样冲跨了牛顿物理学的基本原则。正如一位物理学家所说:‘相对论消除了绝对空间和时间的牛顿幻觉;量子力学消除了关于可控测量过程的牛顿迷梦;混沌则消除了拉普拉斯决定论关于可预见性的狂想’。而这第三场革命又有一些不同,它直接适用于我们看得见摸得着的世界,是在和人类自身尺度大小差不多的对象中发生的过程。”①


              16楼2007-10-12 09:49
              回复
                谢谢提供这么好的资料。阅读并借鉴了


                17楼2008-10-02 14:48
                回复
                  2025-08-03 04:34:07
                  广告
                  不感兴趣
                  开通SVIP免广告
                  • 58.242.129.*
                  内容太深奥,但是理解清楚了,你会是下个诺贝尔奖得主,人类会记住你,会歌颂你,夸你是世界上最伟大的物理学家!


                  18楼2009-10-31 16:41
                  回复
                    求原文献!谢谢楼主。


                    19楼2011-05-03 21:34
                    回复