博弈江湖吧 关注:26贴子:867
  • 16回复贴,共1

【吉本斯】博弈论基础4非完全信息动态博弈

只看楼主收藏回复

太上有立德,其次有立功,其次有立言,虽久不废,此之谓三不朽。——春秋鲁国大夫叔孙豹


1楼2013-08-07 16:40回复
    本章我们将介绍另一种新的均衡概念——精炼贝叶斯均衡,从而在这四章中就有了四个均衡概念:完全信息静态博弈中纳什均衡、完全信息动态博弈中的子博弈精炼纳什均衡、非完全信息静态博弈中的贝叶斯纳什均衡以及非完全信息动态博弈中的精炼贝叶斯纳什均衡。看起来我们好像对所研究的每一类型的博弈都发明出了一种新的均衡概念,但事实上这些概念又是密切相关的。随我们研究的博弈逐步复杂,我们对均衡概念也逐渐强化,从而可以排除复杂博弈中不合理或没有意义的均衡,而如果我们运用适用于简单博弈的均衡概念就无法区分。在每一种情况下,较强的均衡概念只在应用于复杂的博弈时才不同于较弱的均衡概念,而对简单的博弈并没有区别。具体地说,精炼贝叶斯均衡在非完全信息静态博弈中即等同于贝叶斯纳什均衡,在完全信息动态博弈(以及在许多完全非完美信息动态博弈,包括第2.2节及第2.3节讨论过的博弈)中等同于子博弈精炼纳什均衡,在完全信息静态博弈中等同于纳什均衡。


    2楼2013-08-07 16:53
    回复
      2025-12-25 07:06:54
      广告
      不感兴趣
      开通SVIP免广告
      引入精炼贝叶斯均衡的目的是为了进一步强化(即加强对条件的要求)贝叶斯纳什均衡,这和子博弈精炼纳什均衡强化了纳什均衡是相同的。正如我们在完全信息动态博弈中加上了子博弈精炼的条件,是因为纳什均衡无法包含威胁和承诺都应是可信的这一思想;我们在对非完全信息动态博弈的分析中将集中于精炼纳什均衡,是因为贝叶斯纳什均衡也存在同样的不足。回顾前面讲过的,如果参与者的战略要成为一个子博弈精炼纳什均衡,则它们不仅必须是整个博弈的纳什均衡,还必须是其中每一个子博弈的纳什均衡。在本章中,我们用更为广义的后续博弈(continuation game)的概念来代替子博弈的概念——前者可始于任何完全信息集(而不论是否单节),不再仅开始于单节的信息集。其后,我们进行相似的分析:如果参与者的战略要成为博弈的一个精炼贝叶斯纳什均衡,它们不仅必须是整个博弈的贝叶斯纳什均衡,而且还必须构成每一个后续博弈的贝叶斯纳什均衡。


      3楼2013-08-07 17:40
      回复
        在第4.1节我们一般性地介绍精炼贝叶斯均衡的主要特征。为此,我们暂时采用与上面强调的内容相反的第二(互补的)理解:精炼贝叶斯均衡通过对参与者推断的隐含的分析,强化了子博弈精炼纳什均衡的要求,这也和贝叶斯纳什均衡是相似的。这种第二理解首先由豪尔绍尼(1967)提出,因为我们可以把一个非完全信息博弈描述为一个非完美信息博弈——自然告知参与者i他的类型却没有告知j,于是参与者j就不知道博弈进行的完整过程。因此,一种为在非完全信息动态博弈中强化贝叶斯纳什均衡而设计的均衡概念,同样可以强化完美非完全信息动态博弈中的子博弈精炼纳什均衡。


        4楼2013-08-13 16:09
        回复
          在第4.4节重回理论分析。尽管是本书的最后一节,但它更多地指示博弈论的发展方向及更新和更深入的研究领域,而不只是对以前内容的总结。我们介绍并举例说明两个(相互继承的)对精炼贝叶斯均衡的再精炼。其中第二个是赵和克雷普斯(Chao & Kreps)的直观标准(Intuitive Criterion)。


          7楼2013-08-13 17:03
          回复
            4.1 精炼贝叶斯均衡概述
            考虑如下完全非完美信息动态博弈。第一,参与者1在3个行动中进行选择——L、M及R。如果参与者1选择R,则博弈结束(不等参与者2行动)。如果参与者1选了L或M,则参与者2就会知道1没有选择R(但不清楚1是选择了L还是M),并在或L'或R'两个行动中进行选择,博弈随之结束。收益情况由图4.1.1的扩展式博弈给出。



            8楼2013-08-14 17:21
            回复
              通过图4.1.2给出的这一博弈的标准式表述,我们可以发现存在两个纯战略纳什均衡(L,L')和(R,R')。为确定这些纳什均衡是否符合子博弈精炼的条件,我们先明确博弈的子博弈。由于子博弈根据定义始于单一信息集的决策节(但不包含博弈的第一个决策节),图4.1.1里的博弈不存在子博弈。如果一个博弈没有子博弈,则子博弈精炼的要求(具体地说,即参与者的战略在每一个子博弈中构成纳什均衡)自然就得到满足。从而在任何没有子博弈的博弈中,子博弈精炼纳什均衡的定义便等同于纳什均衡的定义,于是在图4.1.1中,(L,L')以及(R,R')都是子博弈精炼纳什均衡。然而,(R,R')却又明显依赖于一个不可信的威胁:如果轮到参与者2行动,则选择L'要优于选R',于是参与者1便不会由于2威胁他将在其后的行动中选择R',而去选择R。


              9楼2013-08-14 17:32
              回复
                使均衡概念得到进一步强化,以排除图4.1.1中像(R,R')的子博弈精炼纳什均衡的方法之一,是再附加以下两个要求。
                要求1:在每一信息集中,应该行动的参与者必须对博弈进行到该信息集中的哪个节有一个推断(belief)。对于非单节信息集,推断是在信息集中不同节点的一个概率分布;对于单节的信息集,参与者的推断就是到达此单一决策节的概率为1。
                要求2:给定参与者的推断,参与者的战略必须满足序贯理性sequentially rational)的要求。即在每一信息集中应该行动的参与者(以及参与者随后的战略),对于给定的该参与者在此信息集中的推断,以及其他参与者随后的战略(其中“随后的战略”是在达到给定的信息集之后,包括了其后可能发生的每一种情况的完全的行动计划)必须是最优反应。


                10楼2013-08-14 17:44
                回复
                  2025-12-25 07:00:54
                  广告
                  不感兴趣
                  开通SVIP免广告
                  在图4.1.1中,要求1意味着如果博弈的进行达到参与者2的非单节信息集,则参与者2必须对具体达到哪一个节(也就是参与者1选择了L还是R)有一个推断。这样的推断就表示为到达两个节的概率p和1-p,见图4.1.3。
                  给定参与者2的推断,选择R'的期望收益就等于p*0+(1-p)*1=1-p,而选择L'的期望收益等于
                  p*1+(1-p)*2=2-p。由于对任意的p,都有2-p>1-p,要求2就排除了2选择R'的可能性,从而,在本例中简单要求每一参与者持有一个推断,并且在此推断下选择最优行动,就足以使我们排除了不合理的均衡(R,R')。



                  11楼2013-08-15 17:25
                  回复
                    要求1和2只保证了参与者持有推断,并对给定的推断选择最优行动,但并没有明确这些推断是否是理性的。为进一步约束参与者的推断,我们需要区分处于均衡路径上的信息集和不处于均衡路径上的信息集。
                    定义 对于一个给定的扩展式博弈中给定的均衡,如果博弈根据均衡战略进行时将以正的概率达到某信息集,我们称此信息集处于均衡路径之上(on the equilibrium path)。反之,如果博弈根据均衡战略进行时,肯定不会达到某信息集,我们称之为处于均衡战略之外的信息集(offthe equilibrium path )。(其中“均衡”可以是纳什、子博弈精炼、贝叶斯以及精炼贝叶斯)


                    12楼2013-08-15 17:33
                    回复
                      要求1到3包含了精炼贝叶斯均衡的主要内容,这一均衡概念最为关键的新的特征要归功于克雷普斯和威尔逊(1982):在均衡的定义中,推断被提高到和战略同等重要的地位。正式地讲,一个均衡不再只是由两个参与者的一个战略所构成,还包括了两个参与者在该他行动的每一信息集中的一个推断。通过这种方式使参与者推断得以明确的好处在于,和前几章中我们强调参与者选择可信的战略一样,现在我们就可以强调参与者持有理性的推断,无论是处于均衡路径之上(要求3),还是处于均衡路径之外(后面的要求4,以及第4.4节中的其他情况)。


                      14楼2013-08-16 16:45
                      收起回复
                        用数据和公式来经营爱情或者婚姻可以吗?


                        来自手机贴吧15楼2013-08-27 11:46
                        收起回复
                          可以讲一下习题3.8么


                          来自iPad16楼2015-05-27 16:08
                          回复