第二问:应该是:a2\b+b2\c+c2a≥1
证明:a2\b+b2\c+c2\a+(a+b+c)
=(a2\b+b)+(b2\c+c)+(c2\a+a)
=(a2+b2)\b+(b2+c2)\c+(c2+a2)\a
因为a,b,c为正实数,则a2+b2>=2ab
同理: b2+c2>=2bc c2+a2>=2ac
则:原式=(a2+b2)\b+(b2+c2)\c+(c2+a2)\a≥2ab\b+2bc\c+2ca\a=2a+2b+2c
即:a2\b+b2\c+c2\a+(a+b+c)≥2a+2b+2c
所以 :a2\b+b2\c+c2\a≥a+b+c=1