设每辆车获胜的概率为1-P,首胜前输过m场
则胜场数Am=1-m
输n场后获胜的概率Bm=(1-P)*P^m
显然0<P<1
q/t个胜场意味着打了2t-q场胜了t场(t为正整数),胜率为t/(2t-q)
胜场期望Sn=Am*Bm(0~n求和)
Sn=(1-P)[1+(1-1)*P+(1-2)*P^2+……+(1-n)*P^n]
=1+[(1-1)*p-1*P]+[(1-2)*P^2-(1-1)*P]+……+{(1-n)*P^n-[1-(n-1)]*P^n}-(1-n)*P^(n+1)
=1-(1-n)*P^(n+1)+(-P-P^2-……-P^n)
=1-(1-n)*P^(n+1)-P(1-P^n)/(1-P)
=(1-2P)/(1-P)+nP^(n+1)-[P^(n+2)]/(1-p)
当n趋于无穷的时候Sn=(1-2P)/(1-P)
胜率为(1-P)/[2*(1-P)-(1-2P)]=1-P
当n>P/(1-P)且不趋向无穷时,+nP^(n+1)-[P^(n+2)]/(1-p)>0
结论每天只打双倍对胜率并无影响
则胜场数Am=1-m
输n场后获胜的概率Bm=(1-P)*P^m
显然0<P<1
q/t个胜场意味着打了2t-q场胜了t场(t为正整数),胜率为t/(2t-q)
胜场期望Sn=Am*Bm(0~n求和)
Sn=(1-P)[1+(1-1)*P+(1-2)*P^2+……+(1-n)*P^n]
=1+[(1-1)*p-1*P]+[(1-2)*P^2-(1-1)*P]+……+{(1-n)*P^n-[1-(n-1)]*P^n}-(1-n)*P^(n+1)
=1-(1-n)*P^(n+1)+(-P-P^2-……-P^n)
=1-(1-n)*P^(n+1)-P(1-P^n)/(1-P)
=(1-2P)/(1-P)+nP^(n+1)-[P^(n+2)]/(1-p)
当n趋于无穷的时候Sn=(1-2P)/(1-P)
胜率为(1-P)/[2*(1-P)-(1-2P)]=1-P
当n>P/(1-P)且不趋向无穷时,+nP^(n+1)-[P^(n+2)]/(1-p)>0
结论每天只打双倍对胜率并无影响