内容:(最后的答案吓到我了,怎么处理,急需)
>> syms x
>> syms y
>> f=-1e-005*x^3+0.017*x^2-9.1*x+1.7e+003
f =
-1/100000*x^3+17/1000*x^2-91/10*x+1700
>> a=int((1+(diff(f))^2)^(1/2),541.529,758.741)
a =
63356388869197/1196305196206424285613426354252310118400*1942097522960098460055472172073401278671824183674446409^(1/2)+165834940770943/9570441569651394284907410834018480947200000*295710406387379867401499650107100870110407702594471301624889^(1/2)+1000/(34^(1/2)+5)*((-4877586044292285712*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)-836499105506973440*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)-717292065337100840*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*2^(1/2)*17^(1/2)-123014574339260800*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)*2^(1/2)*17^(1/2))/(-9065224865623166788965379767998715515625*34^(1/2)+89010305488081079408686431330616669156058625*34^(1/2)*2^(1/2)*17^(1/2)+519014809446483752000558142728841612334715625*2^(1/2)*17^(1/2)-52858890117002197530552810525080142089250)-(-4877586044292285712*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)-836499105506973440*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)-717292065337100840*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*2^(1/2)*17^(1/2)-123014574339260800*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)*2^(1/2)*17^(1/2))/(1050339113253605412519581088353052645750617625*34^(1/2)*2^(1/2)*17^(1/2)+6124476842656117884979943412935846600356370625*2^(1/2)*17^(1/2)-33294360855605893634605068817711127142052370625*34^(1/2)-194137816518659121159273970456012421804972519250))+6800/3/(34^(1/2)+5)*EllipticF(3/2*(26295993390666*17^(1/2)+76735099754425*2^(1/2))/(57008511819438910774139150434+8383604679329251584432228005*2^(1/2)*17^(1/2))^(1/2),
>> syms x
>> syms y
>> f=-1e-005*x^3+0.017*x^2-9.1*x+1.7e+003
f =
-1/100000*x^3+17/1000*x^2-91/10*x+1700
>> a=int((1+(diff(f))^2)^(1/2),541.529,758.741)
a =
63356388869197/1196305196206424285613426354252310118400*1942097522960098460055472172073401278671824183674446409^(1/2)+165834940770943/9570441569651394284907410834018480947200000*295710406387379867401499650107100870110407702594471301624889^(1/2)+1000/(34^(1/2)+5)*((-4877586044292285712*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)-836499105506973440*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)-717292065337100840*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*2^(1/2)*17^(1/2)-123014574339260800*1676720935865850316886445601^(1/2)*(-16620604887549449101679327256500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-3324120977509889820335865451300/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+3363502197346895735674209875606/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+494632676080425843481501452295/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)*2^(1/2)*17^(1/2))/(-9065224865623166788965379767998715515625*34^(1/2)+89010305488081079408686431330616669156058625*34^(1/2)*2^(1/2)*17^(1/2)+519014809446483752000558142728841612334715625*2^(1/2)*17^(1/2)-52858890117002197530552810525080142089250)-(-4877586044292285712*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)-836499105506973440*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)-717292065337100840*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*2^(1/2)*17^(1/2)-123014574339260800*145218383435333964211840770361^(1/2)*(-1110366796145285357121737865828500/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))-222073359229057071424347573165700/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*2^(1/2)*17^(1/2)+291308077171279932208952585344166/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)+42839423113423519442493027256495/(340+59*34^(1/2))/(34+5*2^(1/2)*17^(1/2))*34^(1/2)*2^(1/2)*17^(1/2))^(1/2)*34^(1/2)*2^(1/2)*17^(1/2))/(1050339113253605412519581088353052645750617625*34^(1/2)*2^(1/2)*17^(1/2)+6124476842656117884979943412935846600356370625*2^(1/2)*17^(1/2)-33294360855605893634605068817711127142052370625*34^(1/2)-194137816518659121159273970456012421804972519250))+6800/3/(34^(1/2)+5)*EllipticF(3/2*(26295993390666*17^(1/2)+76735099754425*2^(1/2))/(57008511819438910774139150434+8383604679329251584432228005*2^(1/2)*17^(1/2))^(1/2),
