A4. 求出所有满足以下条件的n:
存在一个n*n的整数矩阵,使得每一个行向量与自身的点积都是偶数,但两个不同行向量的点积是奇数
B6. Let p be an odd prime. Show that for at least (p+1)/2 values of n in {0,1,...,p-1}, \sum_{k=1}^{p-1}k!n^k is not divisible by p.
存在一个n*n的整数矩阵,使得每一个行向量与自身的点积都是偶数,但两个不同行向量的点积是奇数
B6. Let p be an odd prime. Show that for at least (p+1)/2 values of n in {0,1,...,p-1}, \sum_{k=1}^{p-1}k!n^k is not divisible by p.