设A(x1,y1),B(x2,y2),AB的中点为D(xd,yd),则D也在该直线上,有题意得:y1=3x1^2,y2=3x2^2,而xd=(x1+x2)/2,yd=(y1+y2)/2,同时yd=m(xd+1),且kAB=(y2-y1)/(x2-x1)=3(x2^2-x1^2)/(x2-x1)=3(x1+x2)
=-1/m,所以xd=-1/(6m),将其代入yd=m(xd+1)中得到yd=m-1/6,又yd=(y1+y2)/2=3(x1^2+x2^2)/2=3[x1^2+(x1+1/(3m))^2]/2,所以2m-1/3=3[x1^2+(x1+1/(3m))^2]=6x1^2+2x1/m+1/(3m^2),整理得到6x1^2+2x1/m+1/(3m^2)-2m+1/3=0,所以有得尔他=12m^3-2m^2-1>=0,即(m-1/2)(6m^2+2m+1)>=0,解得m>=1/2,
=-1/m,所以xd=-1/(6m),将其代入yd=m(xd+1)中得到yd=m-1/6,又yd=(y1+y2)/2=3(x1^2+x2^2)/2=3[x1^2+(x1+1/(3m))^2]/2,所以2m-1/3=3[x1^2+(x1+1/(3m))^2]=6x1^2+2x1/m+1/(3m^2),整理得到6x1^2+2x1/m+1/(3m^2)-2m+1/3=0,所以有得尔他=12m^3-2m^2-1>=0,即(m-1/2)(6m^2+2m+1)>=0,解得m>=1/2,