高斯与黎曼几何
古典的几何学者在讨论三维空间中的曲面时,他们留意到曲面上每一点的曲率,都有两个不同的选择。比如在一个圆柱面上,一个方向是沿其横切的圆,另一个则是沿垂直线。
高斯在1827年发现这两个曲率的乘积具有惊人的属性。当我们令曲面在空间变型,只要它没有拉长缩短,这个积是不变的!后世称这个积为高斯曲率。
内蕴几何
高斯把这条定理写入《曲面通论》一书中。他指出必须把曲面的内在性质,即身处曲面内扁小甲虫所经验的属性,与其外在的,即依赖于曲面如何置于空间的性质区分开来,而只有内在性质,才值得“几何学家焚膏继晷,兀兀穷年地上下求索”。后世称研究这些性质的学问为内蕴几何。
高斯曲率决定曲面的内蕴几何
从球面剪取一片曲面,其高斯曲率为正常数。反过来说,局部而言,任何具正常曲率的曲面都可以等距地映射成球面的一部分。
类似地,从双曲曲面剪取的一片,其高斯曲率恒等于―1,而反过来说曲率等于―1的曲面与双面曲面局部相等。双曲曲面曾在讨论欧氏第五公理时论及。
高斯对几何的深思
高斯显然因他的定理兴奋不已。但他并没有认为人们对空间已认识透彻。
高斯:“我愈来愈相信,人类的理性并不能证明或理解几何的必要性。也许后世能对空间的本质有新的洞见,但目前这却是不可能的事。”
物理学的影响
高斯:“当下我们不能把几何与本质是先验的算术相提并论,只适宜将它与力学并列。”
抽象空间(现代几何学的诞生)
高斯研究的是二维曲面内的几何,高维流形的内蕴几何是由黎曼提出的。他在他的教授就职演说《建构几何学的假设》中,利用尺度的无限小形式,引入了抽象空间,在那里高斯曲率有了明确的涵义。这是一个重要的时刻,人们终于摆脱了平坦的欧氏(线性)空间,而成功创造一个自我生存的“内蕴”空间了。
黎曼在1852年的就职演说
在无穷小区域内几何诸假设是否真确,与空间尺度关系的本质有关 …。
要回答这个问题,就必须从这些现象的有关概念入手。这些源于经验的概念,是先由牛顿所奠基,并且透过它们所不能解释的事实而改动,渐臻完备 …。
如此这般,我们便离开了几何,进入另一门科学,即物理的领域了。
黎曼几何
黎曼的新发现从根本上改变了数学家对几何的看法。从此以后,几何学家研究的空间不再依赖于欧氏空间,我们独立地讨论抽象空间的几何了。他的后继者Christoffel、Ricci、Levi-Civita和Beltrami开拓了流形上的微积分和张量分析等研究。不过对绝大多数人而言,这些高维抽象空间要不是枯燥无味,就是跟大自然风马牛不相及。
狭义相对论的背景
第一个对牛顿绝对空间提出具建设性质疑的是奥地利学者马赫。他认为惯性坐标受到地球和其它天体的影响。这项假设被称为马赫原理。
一个极为重要的事实却是麦克斯韦发现光乃是电磁波,其速度与惯性坐标无关,恒为常数。不久又发现了麦氏电磁方程容纳洛伦兹变换为对称群。
时空一体
爱因斯坦于1905年提出狭义相对论。其中一个重要的环节乃是:空间和时间藉着洛伦兹变换融合起来了。
Minkowski(1908):“从今以后,单独的空间和单独的时间都将逐渐消失在阴影之中,唯有两者的融合才能保持独立的存在。”
广义相对论:爱因斯坦的时空
狭义相对论认为,任何信息的传递不能超过光速,这与牛顿力学“两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递”的观点相矛盾。
爱因斯坦写信给Sommerfeld:“我现在正全身心地投入到引力问题的研究 …,有一点是肯定的,我这一生从未如此烦恼过。”
引力场、加速度和几何学
引力是力场的一种,它使物体加速。由于狭义相对论的要求,在与速度平行的方向,速度加快使长度加长,在与速度垂直的方向,长度不变。测量长度的尺规会在不同的方向和点改变正是黎曼几何的特点。