这是有名的生日悖论。生日悖论是指,如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。
10 12%
20 41%
30 70%
50 97%
100 99.99996%
200 99.9999999999999999999999999998%
300 1 − (7 × 10−73)
350 1 − (3 × 10−131)
≥366 100%
假设有n个人在同一房间内,如果要计算有两个人在同一日出生的机率,在不考虑特殊因素的前提下,例如闰年、双胞胎,假设一年365日出生概率是平均分布的(现实生活中,出生机率不是平均分布的)。
计算机率的方法是,首先找出p(n)表示n个人中,每个人的生日日期都不同的概率。假如n > 365,根据鸽巢原理其概率为0,假设n ≤ 365,则概率为:
因为第二个人不能跟第一个人有相同的生日(概率是364/365),第三个人不能跟前两个人生日相同(概率为363/365),依此类推。用阶乘可以写成如下形式:
p(n)表示n个人中至少2人生日相同的概率:
N≤365,根据鸽巢原理, n大于365时概率为1。
当n=23发生的概率大约是0.507。
10 12%
20 41%
30 70%
50 97%
100 99.99996%
200 99.9999999999999999999999999998%
300 1 − (7 × 10−73)
350 1 − (3 × 10−131)
≥366 100%
假设有n个人在同一房间内,如果要计算有两个人在同一日出生的机率,在不考虑特殊因素的前提下,例如闰年、双胞胎,假设一年365日出生概率是平均分布的(现实生活中,出生机率不是平均分布的)。
计算机率的方法是,首先找出p(n)表示n个人中,每个人的生日日期都不同的概率。假如n > 365,根据鸽巢原理其概率为0,假设n ≤ 365,则概率为:
因为第二个人不能跟第一个人有相同的生日(概率是364/365),第三个人不能跟前两个人生日相同(概率为363/365),依此类推。用阶乘可以写成如下形式:
p(n)表示n个人中至少2人生日相同的概率:
N≤365,根据鸽巢原理, n大于365时概率为1。
当n=23发生的概率大约是0.507。










