谁说直接用复合函数求导导不出来?把思路理清楚,我们一起来试试看。
依题意,我们有:
y=y(x)=(x*(e^x*(sin(1/x))^(1/2))^(1/3))^(1/4)
记:
f(x)=x*(e^x*(sin(1/x))^(1/2))^(1/3),
u(x)=(e^x*(sin(1/x))^(1/2))^(1/3),
g(x)=e^x*(sin(1/x))^(1/2),
v(x)=(sin(1/x))^(1/2),
h(x)=sin(1/x)
则:
v(x)=h(x)^(1/2),
g(x)=e^x*v(x),
u(x)=g(x)^(1/3),
f(x)=x*u(x),
y(x)=f(x)^(1/4)
计算:
h'(x)=cos(1/x)*(-1/x^2),
v'(x)=1/2*h(x)^(-1/2)*h'(x)
=1/2*sin(1/x)^(-1/2)*cos(1/x)*(-1/x^2)
=-cos(1/x)/(2*x^2*v(x))
=-cot(1/x)/(2*x^2)*v(x),
g'(x)=e^x*(v(x)+v'(x))
=e^x*(1-cot(x)/(2*x^2))*v(x)
=(1-cot(x)/(2*x^2))*g(x),
u'(x)=1/3*g(x)^(-2/3)*g'(x)
=1/3*(1-cot(x)/(2*x^2))*g(x)^(1/3)
=(1/3-cot(x)/(6*x^2))*u(x),
f'(x)=u(x)+x*u'(x)
=(1/x+1/3-cot(x)/(6*x^2))*x*u(x)
=(1/x+1/3-cot(x)/(6*x^2))*f(x),
从而:
dy/dx:=y'(x)=1/4*f(x)^(-3/4)*f'(x)
=1/4*(1/x+1/3-cot(x)/(6*x^2))*f(x)^(1/4)
=(1/12+1/(4*x)-cot(x)/(24*x^2))*y(x)
将y(x)代入即为所求。